Tits arrangements on cubic curves

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)7-24
Seitenumfang18
FachzeitschriftInnov. Incidence Geom.
Jahrgang18
Ausgabenummer1
PublikationsstatusVeröffentlicht - 10 März 2020

Abstract

We classify affine rank three Tits arrangements whose roots are contained in the locus of a homogeneous cubic polynomial. We find that there exist irreducible affine Tits arrangements which are not locally spherical.

ASJC Scopus Sachgebiete

Zitieren

Tits arrangements on cubic curves. / Cuntz, Michael; Geis, David.
in: Innov. Incidence Geom., Jahrgang 18, Nr. 1, 10.03.2020, S. 7-24.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cuntz, M & Geis, D 2020, 'Tits arrangements on cubic curves', Innov. Incidence Geom., Jg. 18, Nr. 1, S. 7-24. https://doi.org/10.2140/iig.2020.18.7
Cuntz, M., & Geis, D. (2020). Tits arrangements on cubic curves. Innov. Incidence Geom., 18(1), 7-24. https://doi.org/10.2140/iig.2020.18.7
Cuntz M, Geis D. Tits arrangements on cubic curves. Innov. Incidence Geom. 2020 Mär 10;18(1):7-24. doi: 10.2140/iig.2020.18.7
Cuntz, Michael ; Geis, David. / Tits arrangements on cubic curves. in: Innov. Incidence Geom. 2020 ; Jahrgang 18, Nr. 1. S. 7-24.
Download
@article{29c9e1c3ca5a4bd0af22df33b05586ce,
title = "Tits arrangements on cubic curves",
abstract = " We classify affine rank three Tits arrangements whose roots are contained in the locus of a homogeneous cubic polynomial. We find that there exist irreducible affine Tits arrangements which are not locally spherical. ",
keywords = "math.CO, 20F55, 17B22, 52C35, Affine, Simplicial arrangement, Cubic",
author = "Michael Cuntz and David Geis",
note = "Funding Information: This research was supported by a National Institutes of Health Grant, GM 26020, and by a grant-in-aid from the American Heart Association with funds contributed in part by the Greater Los Angeles Affiliate.",
year = "2020",
month = mar,
day = "10",
doi = "10.2140/iig.2020.18.7",
language = "English",
volume = "18",
pages = "7--24",
number = "1",

}

Download

TY - JOUR

T1 - Tits arrangements on cubic curves

AU - Cuntz, Michael

AU - Geis, David

N1 - Funding Information: This research was supported by a National Institutes of Health Grant, GM 26020, and by a grant-in-aid from the American Heart Association with funds contributed in part by the Greater Los Angeles Affiliate.

PY - 2020/3/10

Y1 - 2020/3/10

N2 - We classify affine rank three Tits arrangements whose roots are contained in the locus of a homogeneous cubic polynomial. We find that there exist irreducible affine Tits arrangements which are not locally spherical.

AB - We classify affine rank three Tits arrangements whose roots are contained in the locus of a homogeneous cubic polynomial. We find that there exist irreducible affine Tits arrangements which are not locally spherical.

KW - math.CO

KW - 20F55, 17B22, 52C35

KW - Affine

KW - Simplicial arrangement

KW - Cubic

UR - http://www.scopus.com/inward/record.url?scp=85096901777&partnerID=8YFLogxK

U2 - 10.2140/iig.2020.18.7

DO - 10.2140/iig.2020.18.7

M3 - Article

VL - 18

SP - 7

EP - 24

JO - Innov. Incidence Geom.

JF - Innov. Incidence Geom.

SN - 2640-7337

IS - 1

ER -

Von denselben Autoren