Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 52-62 |
Seitenumfang | 11 |
Fachzeitschrift | TECTONOPHYSICS |
Jahrgang | 684 |
Publikationsstatus | Veröffentlicht - 2 Aug. 2016 |
Abstract
Investigating fault interaction plays a crucial role in seismic hazard assessment. The calculation of Coulomb stress changes allows quantifying the stress changes on so-called receiver faults in the surrounding of the fault that experienced the earthquake. A positive stress change implies that the earthquake brought the receiver fault closer to failure while a negative value indicates a delay of the next earthquake. So far, most studies focussed on stress changes for particular faults and earthquakes. Here we present a general analysis of the Coulomb stress changes on intra-continental dip-slip faults using finite-element models with normal and thrust faults arrays, respectively. Our models allow calculating coseismic (“static”) stress changes on pre-defined fault planes, whose dip and position can be varied. Gravity and ongoing regional deformation (i.e. shortening or extension) are included. The results for thrust and normal faults show that synthetic receiver faults located in the hanging wall and footwall of the source fault exhibit a symmetric stress distribution, with large areas of negative and small areas of positive Coulomb stress changes. In contrast, faults positioned in along-strike prolongation of the source fault and outside of its immediate hanging wall and footwall undergo mostly positive stress changes. The stress changes are largest at the fault tip that is closer to the source fault. Our results show that the stress change distribution depends on the fault dip while the magnitude depends on the friction coefficient and the amount of coseismic slip. The Coulomb stress changes can be explained by the spatial distribution of the coseismic strain, which shows domains of horizontal extension and shortening that alternate both at the surface and with depth. Our models allow identifying the general patterns of Coulomb stress changes on dip-slip faults, which are often concealed by the peculiarity of the specific fault or earthquake in nature.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Erdoberflächenprozesse
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: TECTONOPHYSICS, Jahrgang 684, 02.08.2016, S. 52-62.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Three-dimensional finite-element modelling of coseismic Coulomb stress changes on intra-continental dip-slip faults
AU - Bagge, Meike
AU - Hampel, Andrea
PY - 2016/8/2
Y1 - 2016/8/2
N2 - Investigating fault interaction plays a crucial role in seismic hazard assessment. The calculation of Coulomb stress changes allows quantifying the stress changes on so-called receiver faults in the surrounding of the fault that experienced the earthquake. A positive stress change implies that the earthquake brought the receiver fault closer to failure while a negative value indicates a delay of the next earthquake. So far, most studies focussed on stress changes for particular faults and earthquakes. Here we present a general analysis of the Coulomb stress changes on intra-continental dip-slip faults using finite-element models with normal and thrust faults arrays, respectively. Our models allow calculating coseismic (“static”) stress changes on pre-defined fault planes, whose dip and position can be varied. Gravity and ongoing regional deformation (i.e. shortening or extension) are included. The results for thrust and normal faults show that synthetic receiver faults located in the hanging wall and footwall of the source fault exhibit a symmetric stress distribution, with large areas of negative and small areas of positive Coulomb stress changes. In contrast, faults positioned in along-strike prolongation of the source fault and outside of its immediate hanging wall and footwall undergo mostly positive stress changes. The stress changes are largest at the fault tip that is closer to the source fault. Our results show that the stress change distribution depends on the fault dip while the magnitude depends on the friction coefficient and the amount of coseismic slip. The Coulomb stress changes can be explained by the spatial distribution of the coseismic strain, which shows domains of horizontal extension and shortening that alternate both at the surface and with depth. Our models allow identifying the general patterns of Coulomb stress changes on dip-slip faults, which are often concealed by the peculiarity of the specific fault or earthquake in nature.
AB - Investigating fault interaction plays a crucial role in seismic hazard assessment. The calculation of Coulomb stress changes allows quantifying the stress changes on so-called receiver faults in the surrounding of the fault that experienced the earthquake. A positive stress change implies that the earthquake brought the receiver fault closer to failure while a negative value indicates a delay of the next earthquake. So far, most studies focussed on stress changes for particular faults and earthquakes. Here we present a general analysis of the Coulomb stress changes on intra-continental dip-slip faults using finite-element models with normal and thrust faults arrays, respectively. Our models allow calculating coseismic (“static”) stress changes on pre-defined fault planes, whose dip and position can be varied. Gravity and ongoing regional deformation (i.e. shortening or extension) are included. The results for thrust and normal faults show that synthetic receiver faults located in the hanging wall and footwall of the source fault exhibit a symmetric stress distribution, with large areas of negative and small areas of positive Coulomb stress changes. In contrast, faults positioned in along-strike prolongation of the source fault and outside of its immediate hanging wall and footwall undergo mostly positive stress changes. The stress changes are largest at the fault tip that is closer to the source fault. Our results show that the stress change distribution depends on the fault dip while the magnitude depends on the friction coefficient and the amount of coseismic slip. The Coulomb stress changes can be explained by the spatial distribution of the coseismic strain, which shows domains of horizontal extension and shortening that alternate both at the surface and with depth. Our models allow identifying the general patterns of Coulomb stress changes on dip-slip faults, which are often concealed by the peculiarity of the specific fault or earthquake in nature.
KW - Coseismic Coulomb stress change
KW - Fault interaction
KW - Intra-continental normal and thrust faults
KW - Three-dimensional numerical modelling
UR - http://www.scopus.com/inward/record.url?scp=84991509185&partnerID=8YFLogxK
U2 - 10.1016/j.tecto.2015.10.006
DO - 10.1016/j.tecto.2015.10.006
M3 - Article
AN - SCOPUS:84991509185
VL - 684
SP - 52
EP - 62
JO - TECTONOPHYSICS
JF - TECTONOPHYSICS
SN - 0040-1951
ER -