Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | High-Power Laser Materials Processing: Applications, Diagnostics, and Systems XI |
Herausgeber (Verlag) | SPIE |
Publikationsstatus | Veröffentlicht - 4 März 2022 |
Veranstaltung | High-Power Laser Materials Processing: Applications, Diagnostics, and Systems XI 2022 - Virtual, Online Dauer: 20 Feb. 2022 → 24 Feb. 2022 |
Publikationsreihe
Name | Proceedings of SPIE - The International Society for Optical Engineering |
---|---|
Herausgeber (Verlag) | SPIE |
Band | 11994 |
ISSN (Print) | 0277-786X |
Abstract
The global demand for air travel and air transport is expected to increase again in the next couple of years and so the environmental protection will also increasingly come into focus again. In the aviation sector, this means not only saving fuel and reducing emissions but also reducing the noise pollution caused by aircrafts. A typical method for noise reduction is the use of acoustic liners for sound insulation. Among different designs, acoustic liners can consist of sandwich panels, with one perforated, micro-drilled skin layer, a honeycomb structure and a closed rear layer. Wherever the operating conditions allow, the skin layers are made of carbon fiber reinforced plastics (CFRP), due to weight reasons. Compared to conventional drilling methods for CFRP, laser drilling offers unique benefits such as significantly smaller achievable bore diameters, wear free cutting and flexibility in bore diameter. However, for a large-scale application of laser micro drilling, the process efficiency must be increased and a process control is necessary to avoid damage due to excessive heat input. In this investigation, a process control method based on thermography is presented and evaluated. The control mechanism uses the temperature course in the drilling area to decide whether the process can be terminated in order to avoid time losses and unnecessary heat input. This method was found to be very reliable, however, the synchronization between temperature recording and laser irradiation and the data interpretation need further improvement.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Informatik (insg.)
- Angewandte Informatik
- Mathematik (insg.)
- Angewandte Mathematik
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
High-Power Laser Materials Processing: Applications, Diagnostics, and Systems XI. SPIE, 2022. 1199407 (Proceedings of SPIE - The International Society for Optical Engineering; Band 11994).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Thermal process control for laser micro-drilling of thin CFRP-laminates
AU - Staehr, R.
AU - Henzler, M.
AU - Wippo, V.
AU - Jaeschke, P.
AU - Kaierle, S.
AU - Overmeyer, L.
N1 - Funding Information: The authors would like to thank TRUMPF Laser GmbH for providing the laser source. Funding Information: This paper is based on the miBoS project (“Micro-drilling of sandwich materials”), which is funded by the German Federal Ministry for Economic Affairs and Energy (funding code 20T1926C).
PY - 2022/3/4
Y1 - 2022/3/4
N2 - The global demand for air travel and air transport is expected to increase again in the next couple of years and so the environmental protection will also increasingly come into focus again. In the aviation sector, this means not only saving fuel and reducing emissions but also reducing the noise pollution caused by aircrafts. A typical method for noise reduction is the use of acoustic liners for sound insulation. Among different designs, acoustic liners can consist of sandwich panels, with one perforated, micro-drilled skin layer, a honeycomb structure and a closed rear layer. Wherever the operating conditions allow, the skin layers are made of carbon fiber reinforced plastics (CFRP), due to weight reasons. Compared to conventional drilling methods for CFRP, laser drilling offers unique benefits such as significantly smaller achievable bore diameters, wear free cutting and flexibility in bore diameter. However, for a large-scale application of laser micro drilling, the process efficiency must be increased and a process control is necessary to avoid damage due to excessive heat input. In this investigation, a process control method based on thermography is presented and evaluated. The control mechanism uses the temperature course in the drilling area to decide whether the process can be terminated in order to avoid time losses and unnecessary heat input. This method was found to be very reliable, however, the synchronization between temperature recording and laser irradiation and the data interpretation need further improvement.
AB - The global demand for air travel and air transport is expected to increase again in the next couple of years and so the environmental protection will also increasingly come into focus again. In the aviation sector, this means not only saving fuel and reducing emissions but also reducing the noise pollution caused by aircrafts. A typical method for noise reduction is the use of acoustic liners for sound insulation. Among different designs, acoustic liners can consist of sandwich panels, with one perforated, micro-drilled skin layer, a honeycomb structure and a closed rear layer. Wherever the operating conditions allow, the skin layers are made of carbon fiber reinforced plastics (CFRP), due to weight reasons. Compared to conventional drilling methods for CFRP, laser drilling offers unique benefits such as significantly smaller achievable bore diameters, wear free cutting and flexibility in bore diameter. However, for a large-scale application of laser micro drilling, the process efficiency must be increased and a process control is necessary to avoid damage due to excessive heat input. In this investigation, a process control method based on thermography is presented and evaluated. The control mechanism uses the temperature course in the drilling area to decide whether the process can be terminated in order to avoid time losses and unnecessary heat input. This method was found to be very reliable, however, the synchronization between temperature recording and laser irradiation and the data interpretation need further improvement.
KW - aircraft
KW - CFRP
KW - composites
KW - drilling
KW - laser
KW - perforation
KW - process control
KW - sandwich
KW - Thermography
UR - http://www.scopus.com/inward/record.url?scp=85131226414&partnerID=8YFLogxK
U2 - 10.1117/12.2607494
DO - 10.1117/12.2607494
M3 - Conference contribution
AN - SCOPUS:85131226414
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - High-Power Laser Materials Processing: Applications, Diagnostics, and Systems XI
PB - SPIE
T2 - High-Power Laser Materials Processing
Y2 - 20 February 2022 through 24 February 2022
ER -