Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1433-1489 |
Seitenumfang | 57 |
Fachzeitschrift | Journal of high energy physics |
Ausgabenummer | 10 |
Publikationsstatus | Veröffentlicht - 19 Okt. 2005 |
Abstract
In the recent paper [1], it was argued that the open topological B-model whose target space is a complex (2|4)-dimensional mini-supertwistor space with D3- and D1-branes added corresponds to a super Yang-Mills theory in three dimensions. Without the D1-branes, this topological B-model is equivalent to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the latter with a holomorphic BF-type theory, we describe a twistor correspondence between this theory and a supersymmetric Bogomolny model on ℝ3. The connecting link in this correspondence is a partially holomorphic Chern-Simons theory on a Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the mini-supertwistor space. Along the way of proving this twistor correspondence, we review the necessary basic geometric notions and construct action functionals for the involved theories. Furthermore, we discuss the geometric aspect of a recently proposed deformation of the mini-supertwistor space, which gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually, we present solution generating techniques based on the developed twistorial description together with some examples and comment briefly on a twistor correspondence for super Yang-Mills theory in three dimensions.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of high energy physics, Nr. 10, 19.10.2005, S. 1433-1489.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The topological B-model on a mini-supertwistor space and supersymmetric Bogomolny monopole equations
AU - Popov, Alexander D.
AU - Sämann, Christian
AU - Wolf, Martin
PY - 2005/10/19
Y1 - 2005/10/19
N2 - In the recent paper [1], it was argued that the open topological B-model whose target space is a complex (2|4)-dimensional mini-supertwistor space with D3- and D1-branes added corresponds to a super Yang-Mills theory in three dimensions. Without the D1-branes, this topological B-model is equivalent to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the latter with a holomorphic BF-type theory, we describe a twistor correspondence between this theory and a supersymmetric Bogomolny model on ℝ3. The connecting link in this correspondence is a partially holomorphic Chern-Simons theory on a Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the mini-supertwistor space. Along the way of proving this twistor correspondence, we review the necessary basic geometric notions and construct action functionals for the involved theories. Furthermore, we discuss the geometric aspect of a recently proposed deformation of the mini-supertwistor space, which gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually, we present solution generating techniques based on the developed twistorial description together with some examples and comment briefly on a twistor correspondence for super Yang-Mills theory in three dimensions.
AB - In the recent paper [1], it was argued that the open topological B-model whose target space is a complex (2|4)-dimensional mini-supertwistor space with D3- and D1-branes added corresponds to a super Yang-Mills theory in three dimensions. Without the D1-branes, this topological B-model is equivalent to a dimensionally reduced holomorphic Chern-Simons theory. Identifying the latter with a holomorphic BF-type theory, we describe a twistor correspondence between this theory and a supersymmetric Bogomolny model on ℝ3. The connecting link in this correspondence is a partially holomorphic Chern-Simons theory on a Cauchy-Riemann supermanifold which is a real one-dimensional fibration over the mini-supertwistor space. Along the way of proving this twistor correspondence, we review the necessary basic geometric notions and construct action functionals for the involved theories. Furthermore, we discuss the geometric aspect of a recently proposed deformation of the mini-supertwistor space, which gives rise to mass terms in the supersymmetric Bogomolny equations. Eventually, we present solution generating techniques based on the developed twistorial description together with some examples and comment briefly on a twistor correspondence for super Yang-Mills theory in three dimensions.
KW - Chern-Simons Theories
KW - Integrable Field Theories
KW - Superspaces
UR - http://www.scopus.com/inward/record.url?scp=27544451124&partnerID=8YFLogxK
U2 - 10.1088/1126-6708/2005/10/058
DO - 10.1088/1126-6708/2005/10/058
M3 - Article
AN - SCOPUS:27544451124
SP - 1433
EP - 1489
JO - Journal of high energy physics
JF - Journal of high energy physics
SN - 1029-8479
IS - 10
ER -