The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • Philippe Laurençot
  • Christoph Walker

Organisationseinheiten

Externe Organisationen

  • Université de Toulouse
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksElliptic and Parabolic Equations
UntertitelHannover, September 2013
Herausgeber/-innenJoachim Escher, Elmar Schrohe, Jörg Seiler, Christoph Walker
Seiten233-246
Seitenumfang14
ISBN (elektronisch)978-3-319-12547-3
PublikationsstatusVeröffentlicht - 5 Juni 2015
VeranstaltungInternational Workshop on Elliptic and Parabolic Equations, 2013 - Hannover, Deutschland
Dauer: 10 Sept. 201312 Sept. 2013

Publikationsreihe

NameSpringer Proceedings in Mathematics and Statistics
Herausgeber (Verlag)Springer Publishing Company
Band119
ISSN (Print)2194-1009
ISSN (elektronisch)2194-1017

Abstract

We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential.We first review some recent results on existence and nonexistence of steady states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit, when the ratio between inertial and damping effects decays to zero.

ASJC Scopus Sachgebiete

Zitieren

The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS. / Laurençot, Philippe; Walker, Christoph.
Elliptic and Parabolic Equations: Hannover, September 2013. Hrsg. / Joachim Escher; Elmar Schrohe; Jörg Seiler; Christoph Walker. 2015. S. 233-246 (Springer Proceedings in Mathematics and Statistics; Band 119).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Laurençot, P & Walker, C 2015, The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS. in J Escher, E Schrohe, J Seiler & C Walker (Hrsg.), Elliptic and Parabolic Equations: Hannover, September 2013. Springer Proceedings in Mathematics and Statistics, Bd. 119, S. 233-246, International Workshop on Elliptic and Parabolic Equations, 2013, Hannover, Deutschland, 10 Sept. 2013. https://doi.org/10.48550/arXiv.1404.6342, https://doi.org/10.1007/978-3-319-12547-3_10
Laurençot, P., & Walker, C. (2015). The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS. In J. Escher, E. Schrohe, J. Seiler, & C. Walker (Hrsg.), Elliptic and Parabolic Equations: Hannover, September 2013 (S. 233-246). (Springer Proceedings in Mathematics and Statistics; Band 119). https://doi.org/10.48550/arXiv.1404.6342, https://doi.org/10.1007/978-3-319-12547-3_10
Laurençot P, Walker C. The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS. in Escher J, Schrohe E, Seiler J, Walker C, Hrsg., Elliptic and Parabolic Equations: Hannover, September 2013. 2015. S. 233-246. (Springer Proceedings in Mathematics and Statistics). Epub 2015 Jan 1. doi: 10.48550/arXiv.1404.6342, 10.1007/978-3-319-12547-3_10
Laurençot, Philippe ; Walker, Christoph. / The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS. Elliptic and Parabolic Equations: Hannover, September 2013. Hrsg. / Joachim Escher ; Elmar Schrohe ; Jörg Seiler ; Christoph Walker. 2015. S. 233-246 (Springer Proceedings in Mathematics and Statistics).
Download
@inproceedings{b7dbe705e7904f1aacb1deef263b3f5e,
title = "The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS",
abstract = "We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential.We first review some recent results on existence and nonexistence of steady states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit, when the ratio between inertial and damping effects decays to zero.",
keywords = "math.AP",
author = "Philippe Lauren{\c c}ot and Christoph Walker",
year = "2015",
month = jun,
day = "5",
doi = "10.48550/arXiv.1404.6342",
language = "English",
isbn = "978-3-319-12546-6",
series = "Springer Proceedings in Mathematics and Statistics",
publisher = "Springer Publishing Company",
pages = "233--246",
editor = "Joachim Escher and Elmar Schrohe and J{\"o}rg Seiler and Christoph Walker",
booktitle = "Elliptic and Parabolic Equations",
note = "International Workshop on Elliptic and Parabolic Equations, 2013 ; Conference date: 10-09-2013 Through 12-09-2013",

}

Download

TY - GEN

T1 - The Time Singular Limit for a Fourth-Order Damped Wave Equation for MEMS

AU - Laurençot, Philippe

AU - Walker, Christoph

PY - 2015/6/5

Y1 - 2015/6/5

N2 - We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential.We first review some recent results on existence and nonexistence of steady states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit, when the ratio between inertial and damping effects decays to zero.

AB - We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential.We first review some recent results on existence and nonexistence of steady states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit, when the ratio between inertial and damping effects decays to zero.

KW - math.AP

UR - http://www.scopus.com/inward/record.url?scp=84931435358&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1404.6342

DO - 10.48550/arXiv.1404.6342

M3 - Conference contribution

AN - SCOPUS:84931435358

SN - 978-3-319-12546-6

SN - 978-3-319-38150-3

T3 - Springer Proceedings in Mathematics and Statistics

SP - 233

EP - 246

BT - Elliptic and Parabolic Equations

A2 - Escher, Joachim

A2 - Schrohe, Elmar

A2 - Seiler, Jörg

A2 - Walker, Christoph

T2 - International Workshop on Elliptic and Parabolic Equations, 2013

Y2 - 10 September 2013 through 12 September 2013

ER -