Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1419-1433 |
Seitenumfang | 15 |
Fachzeitschrift | SIAM Journal on Mathematical Analysis |
Jahrgang | 29 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - Nov. 1998 |
Extern publiziert | Ja |
Abstract
We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Computational Mathematics
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: SIAM Journal on Mathematical Analysis, Jahrgang 29, Nr. 6, 11.1998, S. 1419-1433.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The surface diffusion flow for immersed hypersurfaces
AU - Escher, Joachim
AU - Mayer, Uwe F.
AU - Simonett, Gieri
PY - 1998/11
Y1 - 1998/11
N2 - We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.
AB - We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.
KW - Center manifolds
KW - Free boundary problem
KW - Immersed hypersurfaces
KW - Maximal regularity
KW - Mean curvature
KW - Numerical simulations
KW - Surface diffusion
UR - http://www.scopus.com/inward/record.url?scp=0032379074&partnerID=8YFLogxK
U2 - 10.1137/S0036141097320675
DO - 10.1137/S0036141097320675
M3 - Article
AN - SCOPUS:0032379074
VL - 29
SP - 1419
EP - 1433
JO - SIAM Journal on Mathematical Analysis
JF - SIAM Journal on Mathematical Analysis
SN - 0036-1410
IS - 6
ER -