The surface diffusion flow for immersed hypersurfaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Universität Basel
  • Vanderbilt University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1419-1433
Seitenumfang15
FachzeitschriftSIAM Journal on Mathematical Analysis
Jahrgang29
Ausgabenummer6
PublikationsstatusVeröffentlicht - Nov. 1998
Extern publiziertJa

Abstract

We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.

ASJC Scopus Sachgebiete

Zitieren

The surface diffusion flow for immersed hypersurfaces. / Escher, Joachim; Mayer, Uwe F.; Simonett, Gieri.
in: SIAM Journal on Mathematical Analysis, Jahrgang 29, Nr. 6, 11.1998, S. 1419-1433.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Escher J, Mayer UF, Simonett G. The surface diffusion flow for immersed hypersurfaces. SIAM Journal on Mathematical Analysis. 1998 Nov;29(6):1419-1433. doi: 10.1137/S0036141097320675
Escher, Joachim ; Mayer, Uwe F. ; Simonett, Gieri. / The surface diffusion flow for immersed hypersurfaces. in: SIAM Journal on Mathematical Analysis. 1998 ; Jahrgang 29, Nr. 6. S. 1419-1433.
Download
@article{55ef0847e5cb4269b0caba4c17bf4af3,
title = "The surface diffusion flow for immersed hypersurfaces",
abstract = "We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.",
keywords = "Center manifolds, Free boundary problem, Immersed hypersurfaces, Maximal regularity, Mean curvature, Numerical simulations, Surface diffusion",
author = "Joachim Escher and Mayer, {Uwe F.} and Gieri Simonett",
year = "1998",
month = nov,
doi = "10.1137/S0036141097320675",
language = "English",
volume = "29",
pages = "1419--1433",
journal = "SIAM Journal on Mathematical Analysis",
issn = "0036-1410",
publisher = "Society for Industrial and Applied Mathematics Publications",
number = "6",

}

Download

TY - JOUR

T1 - The surface diffusion flow for immersed hypersurfaces

AU - Escher, Joachim

AU - Mayer, Uwe F.

AU - Simonett, Gieri

PY - 1998/11

Y1 - 1998/11

N2 - We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.

AB - We show existence and uniqueness of classical solutions for the motion of immersed hypersurfaces driven by surface diffusion. If the initial surface is embedded and close to a sphere, we prove that the solution exists globally and converges exponentially fast to a sphere. Furthermore, we provide numerical simulations showing the creation of singularities for immersed curves.

KW - Center manifolds

KW - Free boundary problem

KW - Immersed hypersurfaces

KW - Maximal regularity

KW - Mean curvature

KW - Numerical simulations

KW - Surface diffusion

UR - http://www.scopus.com/inward/record.url?scp=0032379074&partnerID=8YFLogxK

U2 - 10.1137/S0036141097320675

DO - 10.1137/S0036141097320675

M3 - Article

AN - SCOPUS:0032379074

VL - 29

SP - 1419

EP - 1433

JO - SIAM Journal on Mathematical Analysis

JF - SIAM Journal on Mathematical Analysis

SN - 0036-1410

IS - 6

ER -

Von denselben Autoren