Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | EFTF 2012 - 2012 European Frequency and Time Forum, Proceedings |
Seiten | 412-418 |
Seitenumfang | 7 |
Publikationsstatus | Veröffentlicht - 2012 |
Veranstaltung | 2012 European Frequency and Time Forum, EFTF 2012 - Gothenburg, Schweden Dauer: 23 Apr. 2012 → 27 Apr. 2012 |
Publikationsreihe
Name | EFTF 2012 - 2012 European Frequency and Time Forum, Proceedings |
---|
Abstract
The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1×10-15 at 1 s integration time and relative inaccuracy below 5×10-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In order to achieve the goals, SOC2 will develop the necessary laser systems - adapted in terms of power, linewidth, frequency stability, long-term reliability, and accuracy. Novel solutions with reduced space, power and mass requirements will be implemented. Some of the laser systems will be developed towards particularly high compactness and robustness levels. Also, the project will validate crucial laser components in relevant environments. In this paper we present the project and the results achieved during the first year.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Akustik und Ultraschall
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
EFTF 2012 - 2012 European Frequency and Time Forum, Proceedings. 2012. S. 412-418 6502414 (EFTF 2012 - 2012 European Frequency and Time Forum, Proceedings).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - The Space Optical Clocks Project
T2 - 2012 European Frequency and Time Forum, EFTF 2012
AU - Schiller, S.
AU - Görlitz, A.
AU - Nevsky, A.
AU - Alighanbari, S.
AU - Vasilyev, S.
AU - Abou-Jaoudeh, C.
AU - Mura, G.
AU - Franzen, T.
AU - Sterr, U.
AU - Falke, S.
AU - Lisdat, Ch
AU - Rasel, E.
AU - Kulosa, A.
AU - Bize, S.
AU - Lodewyck, J.
AU - Tino, G. M.
AU - Poli, N.
AU - Schioppo, M.
AU - Bongs, K.
AU - Singh, Y.
AU - Gill, P.
AU - Barwood, G.
AU - Ovchinnikov, Y.
AU - Stuhler, J.
AU - Kaenders, W.
AU - Braxmaier, C.
AU - Holzwarth, R.
AU - Donati, A.
AU - Lecomte, S.
AU - Calonico, D.
AU - Levi, F.
PY - 2012
Y1 - 2012
N2 - The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1×10-15 at 1 s integration time and relative inaccuracy below 5×10-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In order to achieve the goals, SOC2 will develop the necessary laser systems - adapted in terms of power, linewidth, frequency stability, long-term reliability, and accuracy. Novel solutions with reduced space, power and mass requirements will be implemented. Some of the laser systems will be developed towards particularly high compactness and robustness levels. Also, the project will validate crucial laser components in relevant environments. In this paper we present the project and the results achieved during the first year.
AB - The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1×10-15 at 1 s integration time and relative inaccuracy below 5×10-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In order to achieve the goals, SOC2 will develop the necessary laser systems - adapted in terms of power, linewidth, frequency stability, long-term reliability, and accuracy. Novel solutions with reduced space, power and mass requirements will be implemented. Some of the laser systems will be developed towards particularly high compactness and robustness levels. Also, the project will validate crucial laser components in relevant environments. In this paper we present the project and the results achieved during the first year.
UR - http://www.scopus.com/inward/record.url?scp=84877605392&partnerID=8YFLogxK
U2 - 10.1109/EFTF.2012.6502414
DO - 10.1109/EFTF.2012.6502414
M3 - Conference contribution
AN - SCOPUS:84877605392
SN - 9781467319249
T3 - EFTF 2012 - 2012 European Frequency and Time Forum, Proceedings
SP - 412
EP - 418
BT - EFTF 2012 - 2012 European Frequency and Time Forum, Proceedings
Y2 - 23 April 2012 through 27 April 2012
ER -