The saturation assumption yields optimal convergence of two-level adaptive BEM

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Dirk Praetorius
  • Michele Ruggeri
  • Ernst P. Stephan

Organisationseinheiten

Externe Organisationen

  • Technische Universität Wien (TUW)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)105-124
Seitenumfang20
FachzeitschriftApplied Numerical Mathematics
Jahrgang152
Frühes Online-Datum21 Jan. 2020
PublikationsstatusVeröffentlicht - Juni 2020

Abstract

We consider the convergence of adaptive BEM for weakly-singular and hypersingular integral equations associated with the Laplacian and the Helmholtz operator in 2D and 3D. The local mesh-refinement is driven by some two-level error estimator. We show that the adaptive algorithm drives the underlying error estimates to zero. Moreover, we prove that the saturation assumption already implies linear convergence of the error with optimal algebraic rates.

ASJC Scopus Sachgebiete

Zitieren

The saturation assumption yields optimal convergence of two-level adaptive BEM. / Praetorius, Dirk; Ruggeri, Michele; Stephan, Ernst P.
in: Applied Numerical Mathematics, Jahrgang 152, 06.2020, S. 105-124.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Praetorius D, Ruggeri M, Stephan EP. The saturation assumption yields optimal convergence of two-level adaptive BEM. Applied Numerical Mathematics. 2020 Jun;152:105-124. Epub 2020 Jan 21. doi: 10.1016/j.apnum.2020.01.014
Praetorius, Dirk ; Ruggeri, Michele ; Stephan, Ernst P. / The saturation assumption yields optimal convergence of two-level adaptive BEM. in: Applied Numerical Mathematics. 2020 ; Jahrgang 152. S. 105-124.
Download
@article{d298b2fddd0a4e809acb29c5fe5ab055,
title = "The saturation assumption yields optimal convergence of two-level adaptive BEM",
abstract = "We consider the convergence of adaptive BEM for weakly-singular and hypersingular integral equations associated with the Laplacian and the Helmholtz operator in 2D and 3D. The local mesh-refinement is driven by some two-level error estimator. We show that the adaptive algorithm drives the underlying error estimates to zero. Moreover, we prove that the saturation assumption already implies linear convergence of the error with optimal algebraic rates.",
keywords = "Adaptive methods, Boundary element method, Convergence, Optimality, Two-level error estimation",
author = "Dirk Praetorius and Michele Ruggeri and Stephan, {Ernst P.}",
note = "Funding Information: The author DP acknowledges the support of the Austria Science Fund (FWF) through the research project Optimal adaptivity for BEM and FEM-BEM coupling (grant P27005) and the special research program (SFB) Taming complexity in partial differential systems (grant F65).",
year = "2020",
month = jun,
doi = "10.1016/j.apnum.2020.01.014",
language = "English",
volume = "152",
pages = "105--124",
journal = "Applied Numerical Mathematics",
issn = "0168-9274",
publisher = "Elsevier",

}

Download

TY - JOUR

T1 - The saturation assumption yields optimal convergence of two-level adaptive BEM

AU - Praetorius, Dirk

AU - Ruggeri, Michele

AU - Stephan, Ernst P.

N1 - Funding Information: The author DP acknowledges the support of the Austria Science Fund (FWF) through the research project Optimal adaptivity for BEM and FEM-BEM coupling (grant P27005) and the special research program (SFB) Taming complexity in partial differential systems (grant F65).

PY - 2020/6

Y1 - 2020/6

N2 - We consider the convergence of adaptive BEM for weakly-singular and hypersingular integral equations associated with the Laplacian and the Helmholtz operator in 2D and 3D. The local mesh-refinement is driven by some two-level error estimator. We show that the adaptive algorithm drives the underlying error estimates to zero. Moreover, we prove that the saturation assumption already implies linear convergence of the error with optimal algebraic rates.

AB - We consider the convergence of adaptive BEM for weakly-singular and hypersingular integral equations associated with the Laplacian and the Helmholtz operator in 2D and 3D. The local mesh-refinement is driven by some two-level error estimator. We show that the adaptive algorithm drives the underlying error estimates to zero. Moreover, we prove that the saturation assumption already implies linear convergence of the error with optimal algebraic rates.

KW - Adaptive methods

KW - Boundary element method

KW - Convergence

KW - Optimality

KW - Two-level error estimation

UR - http://www.scopus.com/inward/record.url?scp=85078412686&partnerID=8YFLogxK

U2 - 10.1016/j.apnum.2020.01.014

DO - 10.1016/j.apnum.2020.01.014

M3 - Article

AN - SCOPUS:85078412686

VL - 152

SP - 105

EP - 124

JO - Applied Numerical Mathematics

JF - Applied Numerical Mathematics

SN - 0168-9274

ER -