The Sasaki-Ricci flow

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Organisationseinheiten

Externe Organisationen

  • Otto-von-Guericke-Universität Magdeburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)951-969
Seitenumfang19
FachzeitschriftInternational Journal of Mathematics
Jahrgang21
Ausgabenummer7
PublikationsstatusVeröffentlicht - 1 Juli 2010

Abstract

In this paper, we introduce the SasakiRicci flow to study the existence of η-Einstein metrics. In the positive case any η-Einstein metric can be homothetically transformed to a SasakiEinstein metric. Hence it is an odd-dimensional counterpart of the KählerRicci flow. We prove its well-posedness and long-time existence. In the negative or null case the flow converges to the unique η-Einstein metric. In the positive case the convergence remains in general open. The paper can be viewed as an odd-dimensional counterpart of Cao's results on the KählerRicci flow.

ASJC Scopus Sachgebiete

Zitieren

The Sasaki-Ricci flow. / Smoczyk, Knut; Wang, Guofang; Zhang, Yongbing.
in: International Journal of Mathematics, Jahrgang 21, Nr. 7, 01.07.2010, S. 951-969.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Smoczyk K, Wang G, Zhang Y. The Sasaki-Ricci flow. International Journal of Mathematics. 2010 Jul 1;21(7):951-969. doi: 10.1142/S0129167X10006331
Smoczyk, Knut ; Wang, Guofang ; Zhang, Yongbing. / The Sasaki-Ricci flow. in: International Journal of Mathematics. 2010 ; Jahrgang 21, Nr. 7. S. 951-969.
Download
@article{847a8695792b451bb773915c844de040,
title = "The Sasaki-Ricci flow",
abstract = "In this paper, we introduce the SasakiRicci flow to study the existence of η-Einstein metrics. In the positive case any η-Einstein metric can be homothetically transformed to a SasakiEinstein metric. Hence it is an odd-dimensional counterpart of the K{\"a}hlerRicci flow. We prove its well-posedness and long-time existence. In the negative or null case the flow converges to the unique η-Einstein metric. In the positive case the convergence remains in general open. The paper can be viewed as an odd-dimensional counterpart of Cao's results on the K{\"a}hlerRicci flow.",
keywords = "η-Einstein metric, SasakiEinstein metric, SasakiRicci flow",
author = "Knut Smoczyk and Guofang Wang and Yongbing Zhang",
note = "Funding information: This research has been supported in parts by the DFG-Priority Program “Global Methods in Complex Geometry”, SPP 1094.",
year = "2010",
month = jul,
day = "1",
doi = "10.1142/S0129167X10006331",
language = "English",
volume = "21",
pages = "951--969",
journal = "International Journal of Mathematics",
issn = "0129-167X",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "7",

}

Download

TY - JOUR

T1 - The Sasaki-Ricci flow

AU - Smoczyk, Knut

AU - Wang, Guofang

AU - Zhang, Yongbing

N1 - Funding information: This research has been supported in parts by the DFG-Priority Program “Global Methods in Complex Geometry”, SPP 1094.

PY - 2010/7/1

Y1 - 2010/7/1

N2 - In this paper, we introduce the SasakiRicci flow to study the existence of η-Einstein metrics. In the positive case any η-Einstein metric can be homothetically transformed to a SasakiEinstein metric. Hence it is an odd-dimensional counterpart of the KählerRicci flow. We prove its well-posedness and long-time existence. In the negative or null case the flow converges to the unique η-Einstein metric. In the positive case the convergence remains in general open. The paper can be viewed as an odd-dimensional counterpart of Cao's results on the KählerRicci flow.

AB - In this paper, we introduce the SasakiRicci flow to study the existence of η-Einstein metrics. In the positive case any η-Einstein metric can be homothetically transformed to a SasakiEinstein metric. Hence it is an odd-dimensional counterpart of the KählerRicci flow. We prove its well-posedness and long-time existence. In the negative or null case the flow converges to the unique η-Einstein metric. In the positive case the convergence remains in general open. The paper can be viewed as an odd-dimensional counterpart of Cao's results on the KählerRicci flow.

KW - η-Einstein metric

KW - SasakiEinstein metric

KW - SasakiRicci flow

UR - http://www.scopus.com/inward/record.url?scp=77955185355&partnerID=8YFLogxK

U2 - 10.1142/S0129167X10006331

DO - 10.1142/S0129167X10006331

M3 - Article

AN - SCOPUS:77955185355

VL - 21

SP - 951

EP - 969

JO - International Journal of Mathematics

JF - International Journal of Mathematics

SN - 0129-167X

IS - 7

ER -

Von denselben Autoren