Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 325-333 |
Seitenumfang | 9 |
Fachzeitschrift | Journal of Applied and Numerical Optimization |
Jahrgang | 1 |
Ausgabenummer | 3 |
Frühes Online-Datum | 31 Dez. 2019 |
Publikationsstatus | Veröffentlicht - 2019 |
Extern publiziert | Ja |
Abstract
The aim of this paper is to present new characterizations of cone-convex and explicitly cone-quasiconvex vector functions with respect to a proper closed solid convex cone of a real linear topological space. These characterizations are given in terms of classical convexity and explicit quasiconvexity of certain real-valued functions, defined by means of the nonlinear scalarization function introduced by Gerstewitz (Tammer) in 1983.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Computational Mathematics
- Mathematik (insg.)
- Steuerung und Optimierung
- Mathematik (insg.)
- Numerische Mathematik
- Mathematik (insg.)
- Modellierung und Simulation
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Applied and Numerical Optimization, Jahrgang 1, Nr. 3, 2019, S. 325-333.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The role of nonlinear scalarization functions in characterizing generalized convex vector functions
AU - Günther, Christian
AU - Popovici, Nicolae
N1 - Publisher Copyright: © 2019 Journal of Applied and Numerical Optimization.
PY - 2019
Y1 - 2019
N2 - The aim of this paper is to present new characterizations of cone-convex and explicitly cone-quasiconvex vector functions with respect to a proper closed solid convex cone of a real linear topological space. These characterizations are given in terms of classical convexity and explicit quasiconvexity of certain real-valued functions, defined by means of the nonlinear scalarization function introduced by Gerstewitz (Tammer) in 1983.
AB - The aim of this paper is to present new characterizations of cone-convex and explicitly cone-quasiconvex vector functions with respect to a proper closed solid convex cone of a real linear topological space. These characterizations are given in terms of classical convexity and explicit quasiconvexity of certain real-valued functions, defined by means of the nonlinear scalarization function introduced by Gerstewitz (Tammer) in 1983.
KW - Cone-convexity
KW - Cone-quasiconvexity
KW - Explicit cone-quasiconvexity
KW - Linear perturbation
KW - Nonlinear scalarization
UR - http://www.scopus.com/inward/record.url?scp=85104528311&partnerID=8YFLogxK
U2 - 10.23952/jano.1.2019.3.09
DO - 10.23952/jano.1.2019.3.09
M3 - Article
VL - 1
SP - 325
EP - 333
JO - Journal of Applied and Numerical Optimization
JF - Journal of Applied and Numerical Optimization
SN - 2562-5527
IS - 3
ER -