The Radioactive Rare Metal Mineralization in the World-Class Sn-Nb-Ta-U-Th-REE-Deposit Madeira (Pitinga, Amazonas State, Brazil): With Special Reference to the Complex Alteration of Pyrochlore-Group Minerals

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Ingrid W. Hadlich
  • Artur C. Bastos Neto
  • Vitor P. Pereira
  • Harald G. Dill
  • Nilson F. Botelho

Organisationseinheiten

Externe Organisationen

  • Universidade Federal do Rio Grande do Sul
  • Universidade de Brasilia
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer895
Seitenumfang32
FachzeitschriftMinerals
Jahrgang14
Ausgabenummer9
PublikationsstatusVeröffentlicht - 30 Aug. 2024

Abstract

This study focuses on the relationship between U and pyrochlore in the world-class Sn-Nb-Ta (U, Th, REE, Li) Madeira deposit within the Pitinga mining district of northern Brazil. The primary U mineralization is of intrusive-type and early magmatic origin, hosted in the peralkaline albite-enriched granite facies of the A-type Madeira granite (~1820 Ma). U-Pb-LREE-enriched pyrochlore is the only primary U ore and is widely and homogeneously dispersed in two albite-enriched granite subfacies: the albite-enriched granite core (AGC) and the albite-enriched granite border (AGB). In both zones, the pyrochlore crystals underwent strong hydrothermal alteration by F-rich, low-temperature aqueous fluids. During this hypogene alteration process, cations such as LREE, Nb, and F were selectively released, while others like Fe and Si were introduced. This led to the successive formation of various secondary pyrochlore varieties and a relative enrichment of U (up to 13.73 wt.% UO2). The alteration of pyrochlore eventually resulted in the breakdown of its structure, leading to the formation of U-bearing columbite pseudomorphs and the precipitation of U-rich silicates (up to 34.35 wt.% UO2), galena, and LREE-rich fluorides within pyrochlore vugs. In contrast to the homogeneous distribution of the primary ore mineralization, the secondary pyrochlore mineralization shows striking zonation, being most intense in the AGB and AGC proximal to a massive cryolite deposit. The U mineralization in the Madeira deposit exhibits grades of 328 ppm UO2, comparable to the main deposits of this type, with significant reserves of up to 52 kt U. However, it is different from those deposits in four key aspects: homogeneous dispersion of mineralization; pyrochlore as the exclusive primary ore mineral; U and Th mineralizations formed at different stages; and intense hydrothermal alteration. These characteristics are attributed to the special conditions imposed by the fluorine-rich nature of the peralkaline magma.

ASJC Scopus Sachgebiete

Zitieren

The Radioactive Rare Metal Mineralization in the World-Class Sn-Nb-Ta-U-Th-REE-Deposit Madeira (Pitinga, Amazonas State, Brazil): With Special Reference to the Complex Alteration of Pyrochlore-Group Minerals. / Hadlich, Ingrid W.; Bastos Neto, Artur C.; Pereira, Vitor P. et al.
in: Minerals, Jahrgang 14, Nr. 9, 895, 30.08.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{b97683213ea740bf8f2deab9c4305b08,
title = "The Radioactive Rare Metal Mineralization in the World-Class Sn-Nb-Ta-U-Th-REE-Deposit Madeira (Pitinga, Amazonas State, Brazil): With Special Reference to the Complex Alteration of Pyrochlore-Group Minerals",
abstract = "This study focuses on the relationship between U and pyrochlore in the world-class Sn-Nb-Ta (U, Th, REE, Li) Madeira deposit within the Pitinga mining district of northern Brazil. The primary U mineralization is of intrusive-type and early magmatic origin, hosted in the peralkaline albite-enriched granite facies of the A-type Madeira granite (~1820 Ma). U-Pb-LREE-enriched pyrochlore is the only primary U ore and is widely and homogeneously dispersed in two albite-enriched granite subfacies: the albite-enriched granite core (AGC) and the albite-enriched granite border (AGB). In both zones, the pyrochlore crystals underwent strong hydrothermal alteration by F-rich, low-temperature aqueous fluids. During this hypogene alteration process, cations such as LREE, Nb, and F were selectively released, while others like Fe and Si were introduced. This led to the successive formation of various secondary pyrochlore varieties and a relative enrichment of U (up to 13.73 wt.% UO2). The alteration of pyrochlore eventually resulted in the breakdown of its structure, leading to the formation of U-bearing columbite pseudomorphs and the precipitation of U-rich silicates (up to 34.35 wt.% UO2), galena, and LREE-rich fluorides within pyrochlore vugs. In contrast to the homogeneous distribution of the primary ore mineralization, the secondary pyrochlore mineralization shows striking zonation, being most intense in the AGB and AGC proximal to a massive cryolite deposit. The U mineralization in the Madeira deposit exhibits grades of 328 ppm UO2, comparable to the main deposits of this type, with significant reserves of up to 52 kt U. However, it is different from those deposits in four key aspects: homogeneous dispersion of mineralization; pyrochlore as the exclusive primary ore mineral; U and Th mineralizations formed at different stages; and intense hydrothermal alteration. These characteristics are attributed to the special conditions imposed by the fluorine-rich nature of the peralkaline magma.",
keywords = "columbite, hydrothermal alteration, Madeira deposit, peralkaline magma, uraniferous pyrochlore, uranium mineralization",
author = "Hadlich, {Ingrid W.} and {Bastos Neto}, {Artur C.} and Pereira, {Vitor P.} and Dill, {Harald G.} and Botelho, {Nilson F.}",
note = "Publisher Copyright: {\textcopyright} 2024 by the authors.",
year = "2024",
month = aug,
day = "30",
doi = "10.3390/min14090895",
language = "English",
volume = "14",
journal = "Minerals",
issn = "2075-163X",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "9",

}

Download

TY - JOUR

T1 - The Radioactive Rare Metal Mineralization in the World-Class Sn-Nb-Ta-U-Th-REE-Deposit Madeira (Pitinga, Amazonas State, Brazil)

T2 - With Special Reference to the Complex Alteration of Pyrochlore-Group Minerals

AU - Hadlich, Ingrid W.

AU - Bastos Neto, Artur C.

AU - Pereira, Vitor P.

AU - Dill, Harald G.

AU - Botelho, Nilson F.

N1 - Publisher Copyright: © 2024 by the authors.

PY - 2024/8/30

Y1 - 2024/8/30

N2 - This study focuses on the relationship between U and pyrochlore in the world-class Sn-Nb-Ta (U, Th, REE, Li) Madeira deposit within the Pitinga mining district of northern Brazil. The primary U mineralization is of intrusive-type and early magmatic origin, hosted in the peralkaline albite-enriched granite facies of the A-type Madeira granite (~1820 Ma). U-Pb-LREE-enriched pyrochlore is the only primary U ore and is widely and homogeneously dispersed in two albite-enriched granite subfacies: the albite-enriched granite core (AGC) and the albite-enriched granite border (AGB). In both zones, the pyrochlore crystals underwent strong hydrothermal alteration by F-rich, low-temperature aqueous fluids. During this hypogene alteration process, cations such as LREE, Nb, and F were selectively released, while others like Fe and Si were introduced. This led to the successive formation of various secondary pyrochlore varieties and a relative enrichment of U (up to 13.73 wt.% UO2). The alteration of pyrochlore eventually resulted in the breakdown of its structure, leading to the formation of U-bearing columbite pseudomorphs and the precipitation of U-rich silicates (up to 34.35 wt.% UO2), galena, and LREE-rich fluorides within pyrochlore vugs. In contrast to the homogeneous distribution of the primary ore mineralization, the secondary pyrochlore mineralization shows striking zonation, being most intense in the AGB and AGC proximal to a massive cryolite deposit. The U mineralization in the Madeira deposit exhibits grades of 328 ppm UO2, comparable to the main deposits of this type, with significant reserves of up to 52 kt U. However, it is different from those deposits in four key aspects: homogeneous dispersion of mineralization; pyrochlore as the exclusive primary ore mineral; U and Th mineralizations formed at different stages; and intense hydrothermal alteration. These characteristics are attributed to the special conditions imposed by the fluorine-rich nature of the peralkaline magma.

AB - This study focuses on the relationship between U and pyrochlore in the world-class Sn-Nb-Ta (U, Th, REE, Li) Madeira deposit within the Pitinga mining district of northern Brazil. The primary U mineralization is of intrusive-type and early magmatic origin, hosted in the peralkaline albite-enriched granite facies of the A-type Madeira granite (~1820 Ma). U-Pb-LREE-enriched pyrochlore is the only primary U ore and is widely and homogeneously dispersed in two albite-enriched granite subfacies: the albite-enriched granite core (AGC) and the albite-enriched granite border (AGB). In both zones, the pyrochlore crystals underwent strong hydrothermal alteration by F-rich, low-temperature aqueous fluids. During this hypogene alteration process, cations such as LREE, Nb, and F were selectively released, while others like Fe and Si were introduced. This led to the successive formation of various secondary pyrochlore varieties and a relative enrichment of U (up to 13.73 wt.% UO2). The alteration of pyrochlore eventually resulted in the breakdown of its structure, leading to the formation of U-bearing columbite pseudomorphs and the precipitation of U-rich silicates (up to 34.35 wt.% UO2), galena, and LREE-rich fluorides within pyrochlore vugs. In contrast to the homogeneous distribution of the primary ore mineralization, the secondary pyrochlore mineralization shows striking zonation, being most intense in the AGB and AGC proximal to a massive cryolite deposit. The U mineralization in the Madeira deposit exhibits grades of 328 ppm UO2, comparable to the main deposits of this type, with significant reserves of up to 52 kt U. However, it is different from those deposits in four key aspects: homogeneous dispersion of mineralization; pyrochlore as the exclusive primary ore mineral; U and Th mineralizations formed at different stages; and intense hydrothermal alteration. These characteristics are attributed to the special conditions imposed by the fluorine-rich nature of the peralkaline magma.

KW - columbite

KW - hydrothermal alteration

KW - Madeira deposit

KW - peralkaline magma

KW - uraniferous pyrochlore

KW - uranium mineralization

UR - http://www.scopus.com/inward/record.url?scp=85205040566&partnerID=8YFLogxK

U2 - 10.3390/min14090895

DO - 10.3390/min14090895

M3 - Article

AN - SCOPUS:85205040566

VL - 14

JO - Minerals

JF - Minerals

SN - 2075-163X

IS - 9

M1 - 895

ER -