Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 419-458 |
Seitenumfang | 40 |
Fachzeitschrift | METRIKA |
Jahrgang | 85 |
Ausgabenummer | 4 |
Frühes Online-Datum | 8 Aug. 2021 |
Publikationsstatus | Veröffentlicht - Mai 2022 |
Abstract
We introduce and discuss a multivariate version of the classical median that is based on an equipartition property with respect to quarter spaces. These arise as pairwise intersections of the half-spaces associated with the coordinate hyperplanes of an orthogonal basis. We obtain results on existence, equivariance, and asymptotic normality.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Entscheidungswissenschaften (insg.)
- Statistik, Wahrscheinlichkeit und Ungewissheit
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: METRIKA, Jahrgang 85, Nr. 4, 05.2022, S. 419-458.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The quarter median
AU - Baringhaus, Ludwig
AU - Grübel, Rudolf
N1 - Publisher Copyright: © 2021, The Author(s).
PY - 2022/5
Y1 - 2022/5
N2 - We introduce and discuss a multivariate version of the classical median that is based on an equipartition property with respect to quarter spaces. These arise as pairwise intersections of the half-spaces associated with the coordinate hyperplanes of an orthogonal basis. We obtain results on existence, equivariance, and asymptotic normality.
AB - We introduce and discuss a multivariate version of the classical median that is based on an equipartition property with respect to quarter spaces. These arise as pairwise intersections of the half-spaces associated with the coordinate hyperplanes of an orthogonal basis. We obtain results on existence, equivariance, and asymptotic normality.
KW - Asymptotic normality
KW - Consistency
KW - Equipartition
KW - Estimation of location
KW - Euclidean motion equivariance
KW - Multivariate median
UR - http://www.scopus.com/inward/record.url?scp=85112027874&partnerID=8YFLogxK
U2 - 10.1007/s00184-021-00836-z
DO - 10.1007/s00184-021-00836-z
M3 - Article
AN - SCOPUS:85112027874
VL - 85
SP - 419
EP - 458
JO - METRIKA
JF - METRIKA
SN - 0026-1335
IS - 4
ER -