The quarter median

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Ludwig Baringhaus
  • Rudolf Grübel
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)419-458
Seitenumfang40
FachzeitschriftMETRIKA
Jahrgang85
Ausgabenummer4
Frühes Online-Datum8 Aug. 2021
PublikationsstatusVeröffentlicht - Mai 2022

Abstract

We introduce and discuss a multivariate version of the classical median that is based on an equipartition property with respect to quarter spaces. These arise as pairwise intersections of the half-spaces associated with the coordinate hyperplanes of an orthogonal basis. We obtain results on existence, equivariance, and asymptotic normality.

ASJC Scopus Sachgebiete

Zitieren

The quarter median. / Baringhaus, Ludwig; Grübel, Rudolf.
in: METRIKA, Jahrgang 85, Nr. 4, 05.2022, S. 419-458.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Baringhaus, L & Grübel, R 2022, 'The quarter median', METRIKA, Jg. 85, Nr. 4, S. 419-458. https://doi.org/10.1007/s00184-021-00836-z
Baringhaus, L., & Grübel, R. (2022). The quarter median. METRIKA, 85(4), 419-458. https://doi.org/10.1007/s00184-021-00836-z
Baringhaus L, Grübel R. The quarter median. METRIKA. 2022 Mai;85(4):419-458. Epub 2021 Aug 8. doi: 10.1007/s00184-021-00836-z
Baringhaus, Ludwig ; Grübel, Rudolf. / The quarter median. in: METRIKA. 2022 ; Jahrgang 85, Nr. 4. S. 419-458.
Download
@article{49716af0ec044f3786bd867c01ef452b,
title = "The quarter median",
abstract = "We introduce and discuss a multivariate version of the classical median that is based on an equipartition property with respect to quarter spaces. These arise as pairwise intersections of the half-spaces associated with the coordinate hyperplanes of an orthogonal basis. We obtain results on existence, equivariance, and asymptotic normality.",
keywords = "Asymptotic normality, Consistency, Equipartition, Estimation of location, Euclidean motion equivariance, Multivariate median",
author = "Ludwig Baringhaus and Rudolf Gr{\"u}bel",
note = "Publisher Copyright: {\textcopyright} 2021, The Author(s).",
year = "2022",
month = may,
doi = "10.1007/s00184-021-00836-z",
language = "English",
volume = "85",
pages = "419--458",
journal = "METRIKA",
issn = "0026-1335",
publisher = "Springer Verlag",
number = "4",

}

Download

TY - JOUR

T1 - The quarter median

AU - Baringhaus, Ludwig

AU - Grübel, Rudolf

N1 - Publisher Copyright: © 2021, The Author(s).

PY - 2022/5

Y1 - 2022/5

N2 - We introduce and discuss a multivariate version of the classical median that is based on an equipartition property with respect to quarter spaces. These arise as pairwise intersections of the half-spaces associated with the coordinate hyperplanes of an orthogonal basis. We obtain results on existence, equivariance, and asymptotic normality.

AB - We introduce and discuss a multivariate version of the classical median that is based on an equipartition property with respect to quarter spaces. These arise as pairwise intersections of the half-spaces associated with the coordinate hyperplanes of an orthogonal basis. We obtain results on existence, equivariance, and asymptotic normality.

KW - Asymptotic normality

KW - Consistency

KW - Equipartition

KW - Estimation of location

KW - Euclidean motion equivariance

KW - Multivariate median

UR - http://www.scopus.com/inward/record.url?scp=85112027874&partnerID=8YFLogxK

U2 - 10.1007/s00184-021-00836-z

DO - 10.1007/s00184-021-00836-z

M3 - Article

AN - SCOPUS:85112027874

VL - 85

SP - 419

EP - 458

JO - METRIKA

JF - METRIKA

SN - 0026-1335

IS - 4

ER -