Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 133-141 |
Seitenumfang | 9 |
Fachzeitschrift | Numerical algorithms |
Jahrgang | 3 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Dez. 1992 |
Abstract
Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Numerical algorithms, Jahrgang 3, Nr. 1, 12.1992, S. 133-141.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The Neville-Aitken formula for rational interpolants with prescribed poles
AU - Carstensen, C.
AU - Mühlbach, G.
PY - 1992/12
Y1 - 1992/12
N2 - Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.
AB - Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.
KW - 65 D 05
KW - AMS 41 A 05
KW - Cauchy-Vandermonde determinants
KW - Interpolation
KW - Neville-Aitken algorithm
KW - prescribed poles
KW - rational functions
UR - http://www.scopus.com/inward/record.url?scp=0043047649&partnerID=8YFLogxK
U2 - 10.1007/BF02141923
DO - 10.1007/BF02141923
M3 - Article
AN - SCOPUS:0043047649
VL - 3
SP - 133
EP - 141
JO - Numerical algorithms
JF - Numerical algorithms
SN - 1017-1398
IS - 1
ER -