The Neville-Aitken formula for rational interpolants with prescribed poles

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • C. Carstensen
  • G. Mühlbach

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)133-141
Seitenumfang9
FachzeitschriftNumerical algorithms
Jahrgang3
Ausgabenummer1
PublikationsstatusVeröffentlicht - Dez. 1992

Abstract

Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.

ASJC Scopus Sachgebiete

Zitieren

The Neville-Aitken formula for rational interpolants with prescribed poles. / Carstensen, C.; Mühlbach, G.
in: Numerical algorithms, Jahrgang 3, Nr. 1, 12.1992, S. 133-141.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Carstensen C, Mühlbach G. The Neville-Aitken formula for rational interpolants with prescribed poles. Numerical algorithms. 1992 Dez;3(1):133-141. doi: 10.1007/BF02141923
Carstensen, C. ; Mühlbach, G. / The Neville-Aitken formula for rational interpolants with prescribed poles. in: Numerical algorithms. 1992 ; Jahrgang 3, Nr. 1. S. 133-141.
Download
@article{6f318c0c99ba4f2690287992d15804ed,
title = "The Neville-Aitken formula for rational interpolants with prescribed poles",
abstract = "Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.",
keywords = "65 D 05, AMS 41 A 05, Cauchy-Vandermonde determinants, Interpolation, Neville-Aitken algorithm, prescribed poles, rational functions",
author = "C. Carstensen and G. M{\"u}hlbach",
year = "1992",
month = dec,
doi = "10.1007/BF02141923",
language = "English",
volume = "3",
pages = "133--141",
journal = "Numerical algorithms",
issn = "1017-1398",
publisher = "Springer Netherlands",
number = "1",

}

Download

TY - JOUR

T1 - The Neville-Aitken formula for rational interpolants with prescribed poles

AU - Carstensen, C.

AU - Mühlbach, G.

PY - 1992/12

Y1 - 1992/12

N2 - Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.

AB - Using a polynomial description of rational interpolation with prescribed poles a simple purely algebraic proof of a Neville-Aitken recurrence formula for rational interpolants with prescribed poles is presented. It is used to compute the general Cauchy-Vandermonde determinant explicitly in terms of the nodes and poles involved.

KW - 65 D 05

KW - AMS 41 A 05

KW - Cauchy-Vandermonde determinants

KW - Interpolation

KW - Neville-Aitken algorithm

KW - prescribed poles

KW - rational functions

UR - http://www.scopus.com/inward/record.url?scp=0043047649&partnerID=8YFLogxK

U2 - 10.1007/BF02141923

DO - 10.1007/BF02141923

M3 - Article

AN - SCOPUS:0043047649

VL - 3

SP - 133

EP - 141

JO - Numerical algorithms

JF - Numerical algorithms

SN - 1017-1398

IS - 1

ER -