The multi-protein family of sulfotransferases in plants: Composition, occurrence, substrate specificity, and functions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer556
FachzeitschriftFrontiers in Plant Science
Jahrgang5
AusgabenummerOCT
PublikationsstatusVeröffentlicht - 16 Okt. 2014

Abstract

All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.

ASJC Scopus Sachgebiete

Zitieren

The multi-protein family of sulfotransferases in plants: Composition, occurrence, substrate specificity, and functions. / Hirschmann, Felix; Papenbrock, Jutta; Krause, Florian.
in: Frontiers in Plant Science, Jahrgang 5, Nr. OCT, 556, 16.10.2014.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{2cfbdc1ceab946aca25de1b21d53fcb4,
title = "The multi-protein family of sulfotransferases in plants: Composition, occurrence, substrate specificity, and functions",
abstract = "All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.",
keywords = "Arabidopsis thaliana, Glucosinolate, Histidine residue, Phosphoadenosine 5 -Phosphosulfate, Sulfotransferase",
author = "Felix Hirschmann and Jutta Papenbrock and Florian Krause",
year = "2014",
month = oct,
day = "16",
doi = "10.3389/fpls.2014.00556",
language = "English",
volume = "5",
journal = "Frontiers in Plant Science",
issn = "1664-462X",
publisher = "Frontiers Media S.A.",
number = "OCT",

}

Download

TY - JOUR

T1 - The multi-protein family of sulfotransferases in plants

T2 - Composition, occurrence, substrate specificity, and functions

AU - Hirschmann, Felix

AU - Papenbrock, Jutta

AU - Krause, Florian

PY - 2014/10/16

Y1 - 2014/10/16

N2 - All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.

AB - All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family transfer a sulfuryl group from the donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to an appropriate hydroxyl group of several classes of substrates. The primary structure of these enzymes is characterized by a histidine residue in the active site, defined PAPS binding sites and a longer SOT domain. Proteins with this SOT domain occur in all organisms from all three domains, usually as a multi-protein family. Arabidopsis thaliana SOTs, the best characterized SOT multi-protein family, contains 21 members. The substrates for several plant enzymes have already been identified, such as glucosinolates, brassinosteroids, jasmonates, flavonoids, and salicylic acid. Much information has been gathered on desulfo-glucosinolate (dsGl) SOTs in A. thaliana. The three cytosolic dsGl SOTs show slightly different expression patterns. The recombinant proteins reveal differences in their affinity to indolic and aliphatic dsGls. Also the respective recombinant dsGl SOTs from different A. thaliana ecotypes differ in their kinetic properties. However, determinants of substrate specificity and the exact reaction mechanism still need to be clarified. Probably, the three-dimensional structures of more plant proteins need to be solved to analyze the mode of action and the responsible amino acids for substrate binding. In addition to A. thaliana, more plant species from several families need to be investigated to fully elucidate the diversity of sulfated molecules and the way of biosynthesis catalyzed by SOT enzymes.

KW - Arabidopsis thaliana

KW - Glucosinolate

KW - Histidine residue

KW - Phosphoadenosine 5 -Phosphosulfate

KW - Sulfotransferase

UR - http://www.scopus.com/inward/record.url?scp=84907979876&partnerID=8YFLogxK

U2 - 10.3389/fpls.2014.00556

DO - 10.3389/fpls.2014.00556

M3 - Article

AN - SCOPUS:84907979876

VL - 5

JO - Frontiers in Plant Science

JF - Frontiers in Plant Science

SN - 1664-462X

IS - OCT

M1 - 556

ER -