The modulus of continuity of Wegner estimates for random Schrödinger operators on metric graphs

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Externe Organisationen

  • Technische Universität Clausthal
  • Technische Universität Chemnitz
  • Rheinische Friedrich-Wilhelms-Universität Bonn
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1-10
Seitenumfang10
FachzeitschriftRandom Operators and Stochastic Equations
Jahrgang16
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Apr. 2008
Extern publiziertJa

Abstract

We consider an alloy type potential on an infinite metric graph. We assume a covering condition on the single site potentials. For random Schrödingers operator associated with the alloy type potential restricted to finite volume subgraphs we prove a Wegner estimate which reproduces the modulus of continuity of the single site distribution measure. The Wegner constant is independent of the energy.

ASJC Scopus Sachgebiete

Zitieren

The modulus of continuity of Wegner estimates for random Schrödinger operators on metric graphs. / Gruber, Michael J.; Veselic, Ivan.
in: Random Operators and Stochastic Equations, Jahrgang 16, Nr. 1, 01.04.2008, S. 1-10.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Gruber MJ, Veselic I. The modulus of continuity of Wegner estimates for random Schrödinger operators on metric graphs. Random Operators and Stochastic Equations. 2008 Apr 1;16(1):1-10. doi: 10.1515/ROSE.2008.001
Gruber, Michael J. ; Veselic, Ivan. / The modulus of continuity of Wegner estimates for random Schrödinger operators on metric graphs. in: Random Operators and Stochastic Equations. 2008 ; Jahrgang 16, Nr. 1. S. 1-10.
Download
@article{802678b065984fb4960df21ddb66806f,
title = "The modulus of continuity of Wegner estimates for random Schr{\"o}dinger operators on metric graphs",
abstract = "We consider an alloy type potential on an infinite metric graph. We assume a covering condition on the single site potentials. For random Schr{\"o}dingers operator associated with the alloy type potential restricted to finite volume subgraphs we prove a Wegner estimate which reproduces the modulus of continuity of the single site distribution measure. The Wegner constant is independent of the energy.",
keywords = "Alloy type model, Integrated density of states, Metric graph, Quantum graph, Random Schr{\"o}dinger operators, Wegner estimate",
author = "Gruber, {Michael J.} and Ivan Veselic",
note = "Funding information: Acknowledgments. The authors were financially supported by the DFG under grant Ve 253/2-2 within the Emmy-Noether-Programme.",
year = "2008",
month = apr,
day = "1",
doi = "10.1515/ROSE.2008.001",
language = "English",
volume = "16",
pages = "1--10",
number = "1",

}

Download

TY - JOUR

T1 - The modulus of continuity of Wegner estimates for random Schrödinger operators on metric graphs

AU - Gruber, Michael J.

AU - Veselic, Ivan

N1 - Funding information: Acknowledgments. The authors were financially supported by the DFG under grant Ve 253/2-2 within the Emmy-Noether-Programme.

PY - 2008/4/1

Y1 - 2008/4/1

N2 - We consider an alloy type potential on an infinite metric graph. We assume a covering condition on the single site potentials. For random Schrödingers operator associated with the alloy type potential restricted to finite volume subgraphs we prove a Wegner estimate which reproduces the modulus of continuity of the single site distribution measure. The Wegner constant is independent of the energy.

AB - We consider an alloy type potential on an infinite metric graph. We assume a covering condition on the single site potentials. For random Schrödingers operator associated with the alloy type potential restricted to finite volume subgraphs we prove a Wegner estimate which reproduces the modulus of continuity of the single site distribution measure. The Wegner constant is independent of the energy.

KW - Alloy type model

KW - Integrated density of states

KW - Metric graph

KW - Quantum graph

KW - Random Schrödinger operators

KW - Wegner estimate

UR - http://www.scopus.com/inward/record.url?scp=71449098700&partnerID=8YFLogxK

U2 - 10.1515/ROSE.2008.001

DO - 10.1515/ROSE.2008.001

M3 - Article

AN - SCOPUS:71449098700

VL - 16

SP - 1

EP - 10

JO - Random Operators and Stochastic Equations

JF - Random Operators and Stochastic Equations

SN - 0926-6364

IS - 1

ER -

Von denselben Autoren