The microlocal spectrum condition, initial value formulations, and background independence

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU Erlangen-Nürnberg)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer022303
FachzeitschriftJournal of mathematical physics
Jahrgang57
Ausgabenummer2
PublikationsstatusVeröffentlicht - 2016
Extern publiziertJa

Abstract

We analyze implications of the microlocal spectrum/Hadamard condition for states in a (linear) quantum field theory on a globally hyperbolic spacetime M in the context of a (distributional) initial value formulation. More specifically, we work in 3+1-split M ≅ ℝ × Σ and give a bound, independent of the spacetime metric, on the wave front sets of the initial data for a quasi-free Hadamard state in a quantum field theory defined by a normally hyperbolic differential operator P acting in a vector bundle E →π M. This aims at a possible way to apply the concept of Hadamard states within approaches to quantum field theory/gravity relying on a Hamiltonian formulation, potentially without a (classical) background metric g.

Zitieren

The microlocal spectrum condition, initial value formulations, and background independence. / Stottmeister, A.; Thiemann, T.
in: Journal of mathematical physics, Jahrgang 57, Nr. 2, 022303, 2016.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{401d176af5bb4c0c80828ef83c62bf08,
title = "The microlocal spectrum condition, initial value formulations, and background independence",
abstract = "We analyze implications of the microlocal spectrum/Hadamard condition for states in a (linear) quantum field theory on a globally hyperbolic spacetime M in the context of a (distributional) initial value formulation. More specifically, we work in 3+1-split M ≅ ℝ × Σ and give a bound, independent of the spacetime metric, on the wave front sets of the initial data for a quasi-free Hadamard state in a quantum field theory defined by a normally hyperbolic differential operator P acting in a vector bundle E →π M. This aims at a possible way to apply the concept of Hadamard states within approaches to quantum field theory/gravity relying on a Hamiltonian formulation, potentially without a (classical) background metric g.",
author = "A. Stottmeister and T. Thiemann",
note = "Publisher Copyright: {\textcopyright} 2016 AIP Publishing LLC.",
year = "2016",
doi = "10.1063/1.4940052",
language = "English",
volume = "57",
journal = "Journal of mathematical physics",
issn = "0022-2488",
publisher = "American Institute of Physics",
number = "2",

}

Download

TY - JOUR

T1 - The microlocal spectrum condition, initial value formulations, and background independence

AU - Stottmeister, A.

AU - Thiemann, T.

N1 - Publisher Copyright: © 2016 AIP Publishing LLC.

PY - 2016

Y1 - 2016

N2 - We analyze implications of the microlocal spectrum/Hadamard condition for states in a (linear) quantum field theory on a globally hyperbolic spacetime M in the context of a (distributional) initial value formulation. More specifically, we work in 3+1-split M ≅ ℝ × Σ and give a bound, independent of the spacetime metric, on the wave front sets of the initial data for a quasi-free Hadamard state in a quantum field theory defined by a normally hyperbolic differential operator P acting in a vector bundle E →π M. This aims at a possible way to apply the concept of Hadamard states within approaches to quantum field theory/gravity relying on a Hamiltonian formulation, potentially without a (classical) background metric g.

AB - We analyze implications of the microlocal spectrum/Hadamard condition for states in a (linear) quantum field theory on a globally hyperbolic spacetime M in the context of a (distributional) initial value formulation. More specifically, we work in 3+1-split M ≅ ℝ × Σ and give a bound, independent of the spacetime metric, on the wave front sets of the initial data for a quasi-free Hadamard state in a quantum field theory defined by a normally hyperbolic differential operator P acting in a vector bundle E →π M. This aims at a possible way to apply the concept of Hadamard states within approaches to quantum field theory/gravity relying on a Hamiltonian formulation, potentially without a (classical) background metric g.

UR - http://www.scopus.com/inward/record.url?scp=84958019498&partnerID=8YFLogxK

U2 - 10.1063/1.4940052

DO - 10.1063/1.4940052

M3 - Article

VL - 57

JO - Journal of mathematical physics

JF - Journal of mathematical physics

SN - 0022-2488

IS - 2

M1 - 022303

ER -

Von denselben Autoren