Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 311-322 |
Seitenumfang | 12 |
Fachzeitschrift | Annals of Global Analysis and Geometry |
Jahrgang | 11 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - Nov. 1993 |
Extern publiziert | Ja |
Abstract
The L2-metric {ie311-1} on the moduli space M1(Q) of self-dual SU(2)-connections with instanton number 1 over the Euclidean 4-space is described. It is shown that the Riemannian manifold (M1(Q), {ie311-2}) is isometric to R+ × R4 with the Euclidean metric.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Sozialwissenschaften (insg.)
- Politikwissenschaften und internationale Beziehungen
- Mathematik (insg.)
- Geometrie und Topologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annals of Global Analysis and Geometry, Jahrgang 11, Nr. 4, 11.1993, S. 311-322.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The L2-metric on the moduli space of SU(2)-instantons with instanton number 1 over the Euclidean 4-space
AU - Habermann, Lutz
PY - 1993/11
Y1 - 1993/11
N2 - The L2-metric {ie311-1} on the moduli space M1(Q) of self-dual SU(2)-connections with instanton number 1 over the Euclidean 4-space is described. It is shown that the Riemannian manifold (M1(Q), {ie311-2}) is isometric to R+ × R4 with the Euclidean metric.
AB - The L2-metric {ie311-1} on the moduli space M1(Q) of self-dual SU(2)-connections with instanton number 1 over the Euclidean 4-space is described. It is shown that the Riemannian manifold (M1(Q), {ie311-2}) is isometric to R+ × R4 with the Euclidean metric.
KW - Euclidean 4-space
KW - L-metric
KW - MSC 1991: 53C07
KW - Self-dual connections
UR - http://www.scopus.com/inward/record.url?scp=34250080965&partnerID=8YFLogxK
U2 - 10.1007/BF00773547
DO - 10.1007/BF00773547
M3 - Article
AN - SCOPUS:34250080965
VL - 11
SP - 311
EP - 322
JO - Annals of Global Analysis and Geometry
JF - Annals of Global Analysis and Geometry
SN - 0232-704X
IS - 4
ER -