The Fourier-Mukai transform of a universal family of stable vector bundles

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Fabian Reede

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer2150007
FachzeitschriftInternational Journal of Mathematics
Jahrgang32
Ausgabenummer2
PublikationsstatusVeröffentlicht - 6 Jan. 2021

Abstract

In this note we prove that the Fourier-Mukai transform φ of the universal family of the moduli space 2(4, 1, 3) is not fully faithful.

ASJC Scopus Sachgebiete

Zitieren

The Fourier-Mukai transform of a universal family of stable vector bundles. / Reede, Fabian.
in: International Journal of Mathematics, Jahrgang 32, Nr. 2, 2150007, 06.01.2021.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{e1d78a2997804ff1a52b4e81378e94c0,
title = "The Fourier-Mukai transform of a universal family of stable vector bundles",
abstract = "In this note we prove that the Fourier-Mukai transform φ of the universal family of the moduli space 2(4, 1, 3) is not fully faithful. ",
keywords = "derived categories, Fourier-Mukai transforms, Hilbert schemes, moduli spaces, vector bundles",
author = "Fabian Reede",
year = "2021",
month = jan,
day = "6",
doi = "10.1142/S0129167X21500075",
language = "English",
volume = "32",
journal = "International Journal of Mathematics",
issn = "0129-167X",
publisher = "World Scientific Publishing Co. Pte Ltd",
number = "2",

}

Download

TY - JOUR

T1 - The Fourier-Mukai transform of a universal family of stable vector bundles

AU - Reede, Fabian

PY - 2021/1/6

Y1 - 2021/1/6

N2 - In this note we prove that the Fourier-Mukai transform φ of the universal family of the moduli space 2(4, 1, 3) is not fully faithful.

AB - In this note we prove that the Fourier-Mukai transform φ of the universal family of the moduli space 2(4, 1, 3) is not fully faithful.

KW - derived categories

KW - Fourier-Mukai transforms

KW - Hilbert schemes

KW - moduli spaces

KW - vector bundles

UR - http://www.scopus.com/inward/record.url?scp=85099338061&partnerID=8YFLogxK

U2 - 10.1142/S0129167X21500075

DO - 10.1142/S0129167X21500075

M3 - Article

AN - SCOPUS:85099338061

VL - 32

JO - International Journal of Mathematics

JF - International Journal of Mathematics

SN - 0129-167X

IS - 2

M1 - 2150007

ER -