The Degasperis-Procesi equation as a non-metric Euler equation

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Universite d'Aix-Marseille
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1137-1153
Seitenumfang17
FachzeitschriftMathematische Zeitschrift
Jahrgang269
Ausgabenummer3-4
PublikationsstatusVeröffentlicht - 28 Sept. 2010

Abstract

In this paper we present a geometric interpretation of the Degasperis-Procesi (DP) equation as the geodesic flow of a right-invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the DP and the Camassa-Holm equation as an ODE on the Fréchet space of all smooth functions on the circle.

ASJC Scopus Sachgebiete

Zitieren

The Degasperis-Procesi equation as a non-metric Euler equation. / Escher, Joachim; Kolev, Boris.
in: Mathematische Zeitschrift, Jahrgang 269, Nr. 3-4, 28.09.2010, S. 1137-1153.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Escher J, Kolev B. The Degasperis-Procesi equation as a non-metric Euler equation. Mathematische Zeitschrift. 2010 Sep 28;269(3-4):1137-1153. doi: 10.1007/s00209-010-0778-2
Escher, Joachim ; Kolev, Boris. / The Degasperis-Procesi equation as a non-metric Euler equation. in: Mathematische Zeitschrift. 2010 ; Jahrgang 269, Nr. 3-4. S. 1137-1153.
Download
@article{50b33486cb06480f968242b5b4ad2611,
title = "The Degasperis-Procesi equation as a non-metric Euler equation",
abstract = "In this paper we present a geometric interpretation of the Degasperis-Procesi (DP) equation as the geodesic flow of a right-invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the DP and the Camassa-Holm equation as an ODE on the Fr{\'e}chet space of all smooth functions on the circle.",
keywords = "Degasperis-Procesi equation, Diffeomorphisms group of the circle, Euler equation",
author = "Joachim Escher and Boris Kolev",
year = "2010",
month = sep,
day = "28",
doi = "10.1007/s00209-010-0778-2",
language = "English",
volume = "269",
pages = "1137--1153",
journal = "Mathematische Zeitschrift",
issn = "0025-5874",
publisher = "Springer New York",
number = "3-4",

}

Download

TY - JOUR

T1 - The Degasperis-Procesi equation as a non-metric Euler equation

AU - Escher, Joachim

AU - Kolev, Boris

PY - 2010/9/28

Y1 - 2010/9/28

N2 - In this paper we present a geometric interpretation of the Degasperis-Procesi (DP) equation as the geodesic flow of a right-invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the DP and the Camassa-Holm equation as an ODE on the Fréchet space of all smooth functions on the circle.

AB - In this paper we present a geometric interpretation of the Degasperis-Procesi (DP) equation as the geodesic flow of a right-invariant symmetric linear connection on the diffeomorphism group of the circle. We also show that for any evolution in the family of b-equations there is neither gain nor loss of the spatial regularity of solutions. This in turn allows us to view the DP and the Camassa-Holm equation as an ODE on the Fréchet space of all smooth functions on the circle.

KW - Degasperis-Procesi equation

KW - Diffeomorphisms group of the circle

KW - Euler equation

UR - http://www.scopus.com/inward/record.url?scp=81555201634&partnerID=8YFLogxK

U2 - 10.1007/s00209-010-0778-2

DO - 10.1007/s00209-010-0778-2

M3 - Article

AN - SCOPUS:81555201634

VL - 269

SP - 1137

EP - 1153

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 0025-5874

IS - 3-4

ER -

Von denselben Autoren