Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 |
Untertitel | Proceedings |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seitenumfang | 1 |
ISBN (elektronisch) | 9781728104690 |
ISBN (Print) | 9781728104706 |
Publikationsstatus | Veröffentlicht - Juni 2019 |
Veranstaltung | 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Deutschland Dauer: 23 Juni 2019 → 27 Juni 2019 |
Abstract
The wave-particle dualism is one of the most important paradigms of modern physics, often attributing a particle character to objects that are in principle waves. One such example is a soliton, representing a wave that can propagate over extended distances without changing its shape, resembling the trajectories of rigid mechanical bodies in Newtonian physics, even in a collision process [1]. However, this analogy has strong restrictions as still wave properties are required and more importantly only the trivial solution of the momentum conservation equation (exactly equal solitions) can be addressed. Here we take the analogy one decisive step further, discussing completely Newtonian soliton collisions, detached from the wave description. Moreover, we show that the solitons act like extended massive objects, which deform in accord with the continuum mechanical concept of classical theory of elasticity. The interaction offers a variety of possibilities for controlled exchange of energy and momentum, opening a perspective for new applications of solitons in optical switching or trapping.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Spektroskopie
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Instrumentierung
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Informatik (insg.)
- Computernetzwerke und -kommunikation
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019: Proceedings. Institute of Electrical and Electronics Engineers Inc., 2019.
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - The Continuum Mechanics of Soliton Collisions
AU - Melchert, Oliver
AU - Willms, Stephanie
AU - Babushkin, Ihar
AU - Roth, Bernhard
AU - Steinmeyer, Günter
AU - Morgner, Uwe
AU - Demircan, Ayhan
PY - 2019/6
Y1 - 2019/6
N2 - The wave-particle dualism is one of the most important paradigms of modern physics, often attributing a particle character to objects that are in principle waves. One such example is a soliton, representing a wave that can propagate over extended distances without changing its shape, resembling the trajectories of rigid mechanical bodies in Newtonian physics, even in a collision process [1]. However, this analogy has strong restrictions as still wave properties are required and more importantly only the trivial solution of the momentum conservation equation (exactly equal solitions) can be addressed. Here we take the analogy one decisive step further, discussing completely Newtonian soliton collisions, detached from the wave description. Moreover, we show that the solitons act like extended massive objects, which deform in accord with the continuum mechanical concept of classical theory of elasticity. The interaction offers a variety of possibilities for controlled exchange of energy and momentum, opening a perspective for new applications of solitons in optical switching or trapping.
AB - The wave-particle dualism is one of the most important paradigms of modern physics, often attributing a particle character to objects that are in principle waves. One such example is a soliton, representing a wave that can propagate over extended distances without changing its shape, resembling the trajectories of rigid mechanical bodies in Newtonian physics, even in a collision process [1]. However, this analogy has strong restrictions as still wave properties are required and more importantly only the trivial solution of the momentum conservation equation (exactly equal solitions) can be addressed. Here we take the analogy one decisive step further, discussing completely Newtonian soliton collisions, detached from the wave description. Moreover, we show that the solitons act like extended massive objects, which deform in accord with the continuum mechanical concept of classical theory of elasticity. The interaction offers a variety of possibilities for controlled exchange of energy and momentum, opening a perspective for new applications of solitons in optical switching or trapping.
UR - http://www.scopus.com/inward/record.url?scp=85074672634&partnerID=8YFLogxK
U2 - 10.1109/CLEOE-EQEC.2019.8873143
DO - 10.1109/CLEOE-EQEC.2019.8873143
M3 - Conference contribution
SN - 9781728104706
BT - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Y2 - 23 June 2019 through 27 June 2019
ER -