Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | e45 |
Seiten (von - bis) | 1-13 |
Fachzeitschrift | Forum of Mathematics, Sigma |
Jahrgang | 8 |
Publikationsstatus | Veröffentlicht - 9 Nov. 2020 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Computational Mathematics
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Theoretische Informatik
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
- Mathematik (insg.)
- Geometrie und Topologie
- Mathematik (insg.)
- Algebra und Zahlentheorie
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Mathematik (insg.)
- Mathematische Physik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Forum of Mathematics, Sigma, Jahrgang 8, e45, 09.11.2020, S. 1-13.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The construction problem for Hodge numbers modulo an integer in positive characteristic
AU - Van Dobben De Bruyn, Remy
AU - Paulsen, Matthias
N1 - Publisher Copyright: © The Author(s), 2020.
PY - 2020/11/9
Y1 - 2020/11/9
N2 - Let k be an algebraically closed field of positive characteristic. For any integer m≥2 , we show that the Hodge numbers of a smooth projective k-variety can take on any combination of values modulo m, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.
AB - Let k be an algebraically closed field of positive characteristic. For any integer m≥2 , we show that the Hodge numbers of a smooth projective k-variety can take on any combination of values modulo m, subject only to Serre duality. In particular, there are no non-trivial polynomial relations between the Hodge numbers.
KW - 14F99 14G17 14A10 14E99
UR - http://www.scopus.com/inward/record.url?scp=85096137119&partnerID=8YFLogxK
U2 - 10.1017/fms.2020.48
DO - 10.1017/fms.2020.48
M3 - Article
AN - SCOPUS:85096137119
VL - 8
SP - 1
EP - 13
JO - Forum of Mathematics, Sigma
JF - Forum of Mathematics, Sigma
M1 - e45
ER -