Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2427-2434 |
Seitenumfang | 8 |
Fachzeitschrift | Algebra and Number Theory |
Jahrgang | 13 |
Ausgabenummer | 10 |
Publikationsstatus | Veröffentlicht - 2019 |
Extern publiziert | Ja |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Algebra and Number Theory, Jahrgang 13, Nr. 10, 2019, S. 2427-2434.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - The construction problem for hodge numbers modulo an integer
AU - Paulsen, Matthias
AU - Schreieder, Stefan
N1 - Funding information: The second named author thanks J. Kollár and D. Kotschick for independently making him aware of Kollár’s question (answered in Corollary 3 above), which was the starting point of this paper. The authors are grateful to the referees for useful suggestions. This work is supported by the DFG project “Topologische Eigenschaften von algebraischen Varietäten” (project no. 416054549).
PY - 2019
Y1 - 2019
N2 - For any integer m ≥ 2 and any dimension n ≥ 1, we show that any n-dimensional Hodge diamond with values in (FORMULA PRESENTED) is attained by the Hodge numbers of an n-dimensional smooth complex projective variety. As a corollary, there are no polynomial relations among the Hodge numbers of n-dimensional smooth complex projective varieties besides the ones induced by the Hodge symmetries, which answers a question raised by Kollár in 2012.
AB - For any integer m ≥ 2 and any dimension n ≥ 1, we show that any n-dimensional Hodge diamond with values in (FORMULA PRESENTED) is attained by the Hodge numbers of an n-dimensional smooth complex projective variety. As a corollary, there are no polynomial relations among the Hodge numbers of n-dimensional smooth complex projective varieties besides the ones induced by the Hodge symmetries, which answers a question raised by Kollár in 2012.
KW - Construction problem
KW - Hodge numbers
KW - Kähler manifolds
UR - http://www.scopus.com/inward/record.url?scp=85079658953&partnerID=8YFLogxK
U2 - 10.2140/ant.2019.13.2427
DO - 10.2140/ant.2019.13.2427
M3 - Article
AN - SCOPUS:85079658953
VL - 13
SP - 2427
EP - 2434
JO - Algebra and Number Theory
JF - Algebra and Number Theory
SN - 1937-0652
IS - 10
ER -