Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • Sukanta Bose
  • D. D. Brown
  • Y. B. Chen
  • Hai-Ping Cheng
  • Manuela Hanke
  • Hannah Hansen
  • J. Hennig
  • M. T. Hübner
  • R. N. Lang
  • H. M. Lee
  • H. W. Lee
  • J. Lee
  • K. Lee
  • X. Li
  • T. Nguyen
  • Logan Latham Richardson
  • C. A. Rose
  • D. Rose
  • J. R. Sanders
  • Patricia Schmidt
  • L. Sun
  • A. T. Tran
  • Y. F. Wang
  • L. V. White
  • D. S. Wu
  • L. Zhang
  • Fabio Bergamin
  • G. Bergmann
  • A. Bisht
  • Nina Bode
  • P. Booker
  • M. Brinkmann
  • M. Cabero
  • N. Gohlke
  • Timo Denker
  • J. Heinze
  • O. de Varona
  • M. H. Hennig
  • J. Hennig
  • S. Hochheim
  • J. Junker
  • W. Kastaun
  • R. Kirchhoff
  • P. Koch
  • N. Koper
  • C. Krämer
  • V. Kringel
  • N. V. Krishnendu
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • J. Liu
  • J. D. Lough
  • Mariia Matuisheckina
  • M. Mehmet
  • Fabian Meylahn
  • N. Mukund
  • S. L. Nadji
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • E. Schreiber
  • B. W. Schulte
  • Y. Setyawati
  • M. Steinke
  • J. Venneberg
  • M. Weinert
  • F. Wellmann
  • Peter Weßels
  • Maximilian H. Wimmer
  • W. Winkler
  • J. Woehler
  • J. von Wrangel
  • Peter Aufmuth
  • S. Koehlenbeck
  • Mariia Matiushechkina

Externe Organisationen

  • Australian National University
  • Maastricht University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
  • University of Arizona
  • Washington State University Pullman
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Adelaide
  • University of Florida
  • Massachusetts Institute of Technology (MIT)
  • LIGO Laboratory
  • Monash University
  • Inje University
  • Stanford University
  • California Institute of Technology (Caltech)
  • California State University Fullerton
  • The California State University
  • Radboud Universität Nijmegen (RU)
  • University of Melbourne
  • Bellevue College
  • The Chinese University of Hong Kong
  • University of Texas Rio Grande Valley
  • Syracuse University
  • University of Glasgow
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer122002
Seitenumfang39
FachzeitschriftPhysical Review D
Jahrgang103
Ausgabenummer12
PublikationsstatusVeröffentlicht - 15 Juni 2021

Abstract

Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of \({\sim}2\); we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of \({\sim}2.6\) and bound the mass of the graviton to \(m_g \leq 1.76 \times 10^{-23} \mathrm{eV}/c^2\) with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to \(\delta \hat{f}_{220} = 0.03^{+0.38}_{-0.35}\) for the fundamental quadrupolar mode, and \(\delta \hat{f}_{221} = 0.04^{+0.27}_{-0.32}\) for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.

ASJC Scopus Sachgebiete

Zitieren

Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog. / The LIGO Scientific Collaboration; Virgo Collaboration; Bose, Sukanta et al.
in: Physical Review D, Jahrgang 103, Nr. 12, 122002, 15.06.2021.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

The LIGO Scientific Collaboration, Virgo Collaboration, Bose, S, Brown, DD, Chen, YB, Cheng, H-P, Hanke, M, Hansen, H, Hennig, J, Hübner, MT, Lang, RN, Lee, HM, Lee, HW, Lee, J, Lee, K, Li, X, Nguyen, T, Richardson, LL, Rose, CA, Rose, D, Sanders, JR, Schmidt, P, Sun, L, Tran, AT, Wang, YF, White, LV, Wu, DS, Zhang, L, Bergamin, F, Bergmann, G, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Cabero, M, Gohlke, N, Denker, T, Heinze, J, de Varona, O, Hennig, MH, Hennig, J, Hochheim, S, Junker, J, Kastaun, W, Kirchhoff, R, Koch, P, Koper, N, Krämer, C, Kringel, V, Krishnendu, NV, Kuehn, G, Leavey, S, Lehmann, J, Liu, J, Lough, JD, Matuisheckina, M, Mehmet, M, Meylahn, F, Mukund, N, Nadji, SL, Nery, M, Ohme, F, Oppermann, P, Schreiber, E, Schulte, BW, Setyawati, Y, Steinke, M, Venneberg, J, Weinert, M, Wellmann, F, Weßels, P, Wimmer, MH, Winkler, W, Woehler, J, von Wrangel, J, Aufmuth, P, Koehlenbeck, S & Matiushechkina, M 2021, 'Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog', Physical Review D, Jg. 103, Nr. 12, 122002. https://doi.org/10.1103/PhysRevD.103.122002, https://doi.org/10.15488/12067
The LIGO Scientific Collaboration, Virgo Collaboration, Bose, S., Brown, D. D., Chen, Y. B., Cheng, H.-P., Hanke, M., Hansen, H., Hennig, J., Hübner, M. T., Lang, R. N., Lee, H. M., Lee, H. W., Lee, J., Lee, K., Li, X., Nguyen, T., Richardson, L. L., Rose, C. A., ... Matiushechkina, M. (2021). Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog. Physical Review D, 103(12), Artikel 122002. https://doi.org/10.1103/PhysRevD.103.122002, https://doi.org/10.15488/12067
The LIGO Scientific Collaboration, Virgo Collaboration, Bose S, Brown DD, Chen YB, Cheng HP et al. Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog. Physical Review D. 2021 Jun 15;103(12):122002. doi: 10.1103/PhysRevD.103.122002, 10.15488/12067
The LIGO Scientific Collaboration ; Virgo Collaboration ; Bose, Sukanta et al. / Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog. in: Physical Review D. 2021 ; Jahrgang 103, Nr. 12.
Download
@article{35536cff00e849d88603d01ed65818c2,
title = "Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog",
abstract = " Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of \({\sim}2\); we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of \({\sim}2.6\) and bound the mass of the graviton to \(m_g \leq 1.76 \times 10^{-23} \mathrm{eV}/c^2\) with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to \(\delta \hat{f}_{220} = 0.03^{+0.38}_{-0.35}\) for the fundamental quadrupolar mode, and \(\delta \hat{f}_{221} = 0.04^{+0.27}_{-0.32}\) for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics. ",
keywords = "gr-qc, astro-ph.HE",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and R. Abbott and Abbott, {T. D.} and S. Abraham and F. Acernese and K. Ackley and A. Adams and C. Adams and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and G. Allen and A. Allocca and Altin, {P. A.} and A. Amato and S. Anand and A. Ananyeva and Anderson, {S. B.} and Anderson, {W. G.} and Angelova, {S. V.} and S. Ansoldi and Antelis, {J. M.} and S. Antier and S. Appert and K. Arai and Araya, {M. C.} and Areeda, {J. S.} and M. Ar{\`e}ne and N. Arnaud and Aronson, {S. M.} and Arun, {K. G.} and Y. Asali and S. Ascenzi and G. Ashton and Aston, {S. M.} and Danilishin, {S. L.} and K. Danzmann and M. Heurs and H. L{\"u}ck and D. Steinmeyer and H. Vahlbruch and L. Wei and Wilken, {D. M.} and B. Willke and Sukanta Bose and Brown, {D. D.} and Chen, {Y. B.} and Hai-Ping Cheng and Manuela Hanke and Hannah Hansen and J. Hennig and H{\"u}bner, {M. T.} and Lang, {R. N.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and K. Lee and X. Li and T. Nguyen and Richardson, {Logan Latham} and Rose, {C. A.} and D. Rose and Sanders, {J. R.} and Patricia Schmidt and L. Sun and Tran, {A. T.} and Wang, {Y. F.} and White, {L. V.} and Wu, {D. S.} and L. Zhang and Fabio Bergamin and G. Bergmann and A. Bisht and Nina Bode and P. Booker and M. Brinkmann and M. Cabero and N. Gohlke and Timo Denker and J. Heinze and {de Varona}, O. and Hennig, {M. H.} and J. Hennig and S. Hochheim and J. Junker and W. Kastaun and R. Kirchhoff and P. Koch and N. Koper and C. Kr{\"a}mer and V. Kringel and Krishnendu, {N. V.} and G. Kuehn and S. Leavey and J. Lehmann and J. Liu and Lough, {J. D.} and Mariia Matuisheckina and M. Mehmet and Fabian Meylahn and N. Mukund and Nadji, {S. L.} and M. Nery and F. Ohme and P. Oppermann and E. Schreiber and Schulte, {B. W.} and Y. Setyawati and M. Steinke and J. Venneberg and M. Weinert and F. Wellmann and Peter We{\ss}els and Wimmer, {Maximilian H.} and W. Winkler and J. Woehler and {von Wrangel}, J. and Peter Aufmuth and S. Koehlenbeck and Mariia Matiushechkina",
note = "Funding Information: Analyses in this paper made use of numpy , scipy , astropy , ipython , qnm , pesummary , and gwpy ; plots were produced with matplotlib , and seaborn . Posteriors were sampled with stan , cpnest , pymultinest , and lalinference . The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigaci{\'o}n, the Vicepresid{\`e}ncia i Conselleria d{\textquoteright}Innovaci{\'o}, Recerca i Turisme and the Conselleria d{\textquoteright}Educaci{\'o} i Universitat del Govern de les Illes Balears, the Conselleria d{\textquoteright}Innovaci{\'o}, Universitats, Ci{\`e}ncia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concert{\'e}es (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris {\^I}le-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources.",
year = "2021",
month = jun,
day = "15",
doi = "10.1103/PhysRevD.103.122002",
language = "English",
volume = "103",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "12",

}

Download

TY - JOUR

T1 - Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abraham, S.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, A.

AU - Adams, C.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, G.

AU - Allocca, A.

AU - Altin, P. A.

AU - Amato, A.

AU - Anand, S.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Ansoldi, S.

AU - Antelis, J. M.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Aronson, S. M.

AU - Arun, K. G.

AU - Asali, Y.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Aston, S. M.

AU - Danilishin, S. L.

AU - Danzmann, K.

AU - Heurs, M.

AU - Lück, H.

AU - Steinmeyer, D.

AU - Vahlbruch, H.

AU - Wei, L.

AU - Wilken, D. M.

AU - Willke, B.

AU - Bose, Sukanta

AU - Brown, D. D.

AU - Chen, Y. B.

AU - Cheng, Hai-Ping

AU - Hanke, Manuela

AU - Hansen, Hannah

AU - Hennig, J.

AU - Hübner, M. T.

AU - Lang, R. N.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Lee, K.

AU - Li, X.

AU - Nguyen, T.

AU - Richardson, Logan Latham

AU - Rose, C. A.

AU - Rose, D.

AU - Sanders, J. R.

AU - Schmidt, Patricia

AU - Sun, L.

AU - Tran, A. T.

AU - Wang, Y. F.

AU - White, L. V.

AU - Wu, D. S.

AU - Zhang, L.

AU - Bergamin, Fabio

AU - Bergmann, G.

AU - Bisht, A.

AU - Bode, Nina

AU - Booker, P.

AU - Brinkmann, M.

AU - Cabero, M.

AU - Gohlke, N.

AU - Denker, Timo

AU - Heinze, J.

AU - de Varona, O.

AU - Hennig, M. H.

AU - Hennig, J.

AU - Hochheim, S.

AU - Junker, J.

AU - Kastaun, W.

AU - Kirchhoff, R.

AU - Koch, P.

AU - Koper, N.

AU - Krämer, C.

AU - Kringel, V.

AU - Krishnendu, N. V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Liu, J.

AU - Lough, J. D.

AU - Matuisheckina, Mariia

AU - Mehmet, M.

AU - Meylahn, Fabian

AU - Mukund, N.

AU - Nadji, S. L.

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Schreiber, E.

AU - Schulte, B. W.

AU - Setyawati, Y.

AU - Steinke, M.

AU - Venneberg, J.

AU - Weinert, M.

AU - Wellmann, F.

AU - Weßels, Peter

AU - Wimmer, Maximilian H.

AU - Winkler, W.

AU - Woehler, J.

AU - von Wrangel, J.

AU - Aufmuth, Peter

AU - Koehlenbeck, S.

AU - Matiushechkina, Mariia

N1 - Funding Information: Analyses in this paper made use of numpy , scipy , astropy , ipython , qnm , pesummary , and gwpy ; plots were produced with matplotlib , and seaborn . Posteriors were sampled with stan , cpnest , pymultinest , and lalinference . The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources.

PY - 2021/6/15

Y1 - 2021/6/15

N2 - Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of \({\sim}2\); we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of \({\sim}2.6\) and bound the mass of the graviton to \(m_g \leq 1.76 \times 10^{-23} \mathrm{eV}/c^2\) with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to \(\delta \hat{f}_{220} = 0.03^{+0.38}_{-0.35}\) for the fundamental quadrupolar mode, and \(\delta \hat{f}_{221} = 0.04^{+0.27}_{-0.32}\) for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.

AB - Gravitational waves enable tests of general relativity in the highly dynamical and strong-field regime. Using events detected by LIGO-Virgo up to 1 October 2019, we evaluate the consistency of the data with predictions from the theory. We first establish that residuals from the best-fit waveform are consistent with detector noise, and that the low- and high-frequency parts of the signals are in agreement. We then consider parametrized modifications to the waveform by varying post-Newtonian and phenomenological coefficients, improving past constraints by factors of \({\sim}2\); we also find consistency with Kerr black holes when we specifically target signatures of the spin-induced quadrupole moment. Looking for gravitational-wave dispersion, we tighten constraints on Lorentz-violating coefficients by a factor of \({\sim}2.6\) and bound the mass of the graviton to \(m_g \leq 1.76 \times 10^{-23} \mathrm{eV}/c^2\) with 90% credibility. We also analyze the properties of the merger remnants by measuring ringdown frequencies and damping times, constraining fractional deviations away from the Kerr frequency to \(\delta \hat{f}_{220} = 0.03^{+0.38}_{-0.35}\) for the fundamental quadrupolar mode, and \(\delta \hat{f}_{221} = 0.04^{+0.27}_{-0.32}\) for the first overtone; additionally, we find no evidence for postmerger echoes. Finally, we determine that our data are consistent with tensorial polarizations through a template-independent method. When possible, we assess the validity of general relativity based on collections of events analyzed jointly. We find no evidence for new physics beyond general relativity, for black hole mimickers, or for any unaccounted systematics.

KW - gr-qc

KW - astro-ph.HE

UR - http://www.scopus.com/inward/record.url?scp=85108209768&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.103.122002

DO - 10.1103/PhysRevD.103.122002

M3 - Article

VL - 103

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 12

M1 - 122002

ER -

Von denselben Autoren