Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 301-320 |
Seitenumfang | 20 |
Fachzeitschrift | Geochemistry international |
Jahrgang | 54 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 13 Mai 2016 |
Abstract
Testing the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer (BBG) on independent experimental data indicates that it overestimates the oxygen fugacity by 0.6–1.3 log units under mildly reduced conditions (near the C–CO buffer) and by as much as 2–3 log units under reduced conditions (at the IW buffer and below it). A newly developed oxibarometer is suggested to minimize this effect and enhance the capabilities of redoxometry of low-pressure mineral associations, including magmatic melts undersaturated with respect to orthopyroxene (Opx). The new empirical equation of the oxybarometer is applicable to a wide range of mafic–ultramafic magmas of normal alkalinity, including terrestrial, lunar, and meteoritic systems under pressures of 0.001–25 kbar and oxygen fugacity ranging from IW–3 to NNO + 1. The derived regression fits the ΔQFM values of the calibration dataset (154 experiments) accurate to ~0.5 log units. The new oxybarometer eliminates systematic errors when redox parameters are evaluated for the reduced region (from IW–3 to C–CO) and for crystallization of magmas without Opx on the liquidus. The efficiency of the suggested model is demonstrated by its application to natural rocks: (1) low-Ti lunar basalts, (2) tholeiites from the Shatsky Rise, (3) Siberian flood basalts, (4) rocks of the layered series of the Yoko-Dovyren intrusion, and (5) mantle xenoliths collected in southern Siberia, Mongolia, China, and the southern Russian Far East. The values yielded by such oxybarometers for intrusive rocks, which underwent long-lasting cooling and postcumulus reequilibration, should be regarded with reserve.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Geochemistry international, Jahrgang 54, Nr. 4, 13.05.2016, S. 301-320.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel
AU - Nikolaev, G. S.
AU - Ariskin, A. A.
AU - Barmina, G. S.
AU - Nazarov, M. A.
AU - Almeev, R. R.
PY - 2016/5/13
Y1 - 2016/5/13
N2 - Testing the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer (BBG) on independent experimental data indicates that it overestimates the oxygen fugacity by 0.6–1.3 log units under mildly reduced conditions (near the C–CO buffer) and by as much as 2–3 log units under reduced conditions (at the IW buffer and below it). A newly developed oxibarometer is suggested to minimize this effect and enhance the capabilities of redoxometry of low-pressure mineral associations, including magmatic melts undersaturated with respect to orthopyroxene (Opx). The new empirical equation of the oxybarometer is applicable to a wide range of mafic–ultramafic magmas of normal alkalinity, including terrestrial, lunar, and meteoritic systems under pressures of 0.001–25 kbar and oxygen fugacity ranging from IW–3 to NNO + 1. The derived regression fits the ΔQFM values of the calibration dataset (154 experiments) accurate to ~0.5 log units. The new oxybarometer eliminates systematic errors when redox parameters are evaluated for the reduced region (from IW–3 to C–CO) and for crystallization of magmas without Opx on the liquidus. The efficiency of the suggested model is demonstrated by its application to natural rocks: (1) low-Ti lunar basalts, (2) tholeiites from the Shatsky Rise, (3) Siberian flood basalts, (4) rocks of the layered series of the Yoko-Dovyren intrusion, and (5) mantle xenoliths collected in southern Siberia, Mongolia, China, and the southern Russian Far East. The values yielded by such oxybarometers for intrusive rocks, which underwent long-lasting cooling and postcumulus reequilibration, should be regarded with reserve.
AB - Testing the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer (BBG) on independent experimental data indicates that it overestimates the oxygen fugacity by 0.6–1.3 log units under mildly reduced conditions (near the C–CO buffer) and by as much as 2–3 log units under reduced conditions (at the IW buffer and below it). A newly developed oxibarometer is suggested to minimize this effect and enhance the capabilities of redoxometry of low-pressure mineral associations, including magmatic melts undersaturated with respect to orthopyroxene (Opx). The new empirical equation of the oxybarometer is applicable to a wide range of mafic–ultramafic magmas of normal alkalinity, including terrestrial, lunar, and meteoritic systems under pressures of 0.001–25 kbar and oxygen fugacity ranging from IW–3 to NNO + 1. The derived regression fits the ΔQFM values of the calibration dataset (154 experiments) accurate to ~0.5 log units. The new oxybarometer eliminates systematic errors when redox parameters are evaluated for the reduced region (from IW–3 to C–CO) and for crystallization of magmas without Opx on the liquidus. The efficiency of the suggested model is demonstrated by its application to natural rocks: (1) low-Ti lunar basalts, (2) tholeiites from the Shatsky Rise, (3) Siberian flood basalts, (4) rocks of the layered series of the Yoko-Dovyren intrusion, and (5) mantle xenoliths collected in southern Siberia, Mongolia, China, and the southern Russian Far East. The values yielded by such oxybarometers for intrusive rocks, which underwent long-lasting cooling and postcumulus reequilibration, should be regarded with reserve.
KW - Cr-spinel
KW - experiments in graphite capsules
KW - intrusive rocks
KW - lunar basalt
KW - mantle nodules
KW - olivine
KW - oxybarometer
KW - oxygen fugacity
KW - redox potential
KW - volcanic rocks
UR - http://www.scopus.com/inward/record.url?scp=84969513717&partnerID=8YFLogxK
U2 - 10.1134/S0016702916040078
DO - 10.1134/S0016702916040078
M3 - Article
AN - SCOPUS:84969513717
VL - 54
SP - 301
EP - 320
JO - Geochemistry international
JF - Geochemistry international
SN - 0016-7029
IS - 4
ER -