Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 720-734 |
Seitenumfang | 15 |
Fachzeitschrift | Environmental microbiology |
Jahrgang | 17 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 1 März 2015 |
Abstract
The impact of temperature on the largely unresolved intermediary ecosystem metabolism and associated unknown microbiota that link cellulose degradation and methane production in soils of a moderately acidic (pH 4.5) fen was investigated. Supplemental [ 13C]cellulose stimulated the accumulation of propionate, acetate and carbon dioxide as well as initial methane production in anoxic peat soil slurries at 15°C and 5°C. Accumulation of organic acids at 15°C was twice as fast as that at 5°C. 16S rRNA [ 13C]cellulose stable isotope probing identified novel unclassified Bacteria (79% identity to the next cultured relative Fibrobacter succinogenes), unclassified Bacteroidetes (89% identity to Prolixibacter bellariivorans), Porphyromonadaceae, Acidobacteriaceae and Ruminococcaceae as main anaerobic degraders of cellulose-derived carbon at both 15°C and 5°C. Holophagaceae and Spirochaetaceae were more abundant at 15°C. Clostridiaceae dominated the degradation of cellulose-derived carbon only at 5°C. Methanosarcina was the dominant methanogenic taxa at both 15°C and 5°C. Relative abundance of Methanocella increased at 15°C whereas that of Methanoregula and Methanosaeta increased at 5°C. Thaumarchaeota closely related to Nitrosotalea (presently not known to grow anaerobically) were abundant at 5°C but absent at 15°C indicating that Nitrosotalea sp. might be capable of anaerobic growth at low temperatures in peat.
ASJC Scopus Sachgebiete
- Immunologie und Mikrobiologie (insg.)
- Mikrobiologie
- Agrar- und Biowissenschaften (insg.)
- Ökologie, Evolution, Verhaltenswissenschaften und Systematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Environmental microbiology, Jahrgang 17, Nr. 3, 01.03.2015, S. 720-734.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil
AU - Schmidt, Oliver
AU - Horn, Marcus A.
AU - Kolb, Steffen
AU - Drake, Harold L.
N1 - Publisher Copyright: © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2015/3/1
Y1 - 2015/3/1
N2 - The impact of temperature on the largely unresolved intermediary ecosystem metabolism and associated unknown microbiota that link cellulose degradation and methane production in soils of a moderately acidic (pH 4.5) fen was investigated. Supplemental [ 13C]cellulose stimulated the accumulation of propionate, acetate and carbon dioxide as well as initial methane production in anoxic peat soil slurries at 15°C and 5°C. Accumulation of organic acids at 15°C was twice as fast as that at 5°C. 16S rRNA [ 13C]cellulose stable isotope probing identified novel unclassified Bacteria (79% identity to the next cultured relative Fibrobacter succinogenes), unclassified Bacteroidetes (89% identity to Prolixibacter bellariivorans), Porphyromonadaceae, Acidobacteriaceae and Ruminococcaceae as main anaerobic degraders of cellulose-derived carbon at both 15°C and 5°C. Holophagaceae and Spirochaetaceae were more abundant at 15°C. Clostridiaceae dominated the degradation of cellulose-derived carbon only at 5°C. Methanosarcina was the dominant methanogenic taxa at both 15°C and 5°C. Relative abundance of Methanocella increased at 15°C whereas that of Methanoregula and Methanosaeta increased at 5°C. Thaumarchaeota closely related to Nitrosotalea (presently not known to grow anaerobically) were abundant at 5°C but absent at 15°C indicating that Nitrosotalea sp. might be capable of anaerobic growth at low temperatures in peat.
AB - The impact of temperature on the largely unresolved intermediary ecosystem metabolism and associated unknown microbiota that link cellulose degradation and methane production in soils of a moderately acidic (pH 4.5) fen was investigated. Supplemental [ 13C]cellulose stimulated the accumulation of propionate, acetate and carbon dioxide as well as initial methane production in anoxic peat soil slurries at 15°C and 5°C. Accumulation of organic acids at 15°C was twice as fast as that at 5°C. 16S rRNA [ 13C]cellulose stable isotope probing identified novel unclassified Bacteria (79% identity to the next cultured relative Fibrobacter succinogenes), unclassified Bacteroidetes (89% identity to Prolixibacter bellariivorans), Porphyromonadaceae, Acidobacteriaceae and Ruminococcaceae as main anaerobic degraders of cellulose-derived carbon at both 15°C and 5°C. Holophagaceae and Spirochaetaceae were more abundant at 15°C. Clostridiaceae dominated the degradation of cellulose-derived carbon only at 5°C. Methanosarcina was the dominant methanogenic taxa at both 15°C and 5°C. Relative abundance of Methanocella increased at 15°C whereas that of Methanoregula and Methanosaeta increased at 5°C. Thaumarchaeota closely related to Nitrosotalea (presently not known to grow anaerobically) were abundant at 5°C but absent at 15°C indicating that Nitrosotalea sp. might be capable of anaerobic growth at low temperatures in peat.
UR - http://www.scopus.com/inward/record.url?scp=84925075975&partnerID=8YFLogxK
U2 - 10.1111/1462-2920.12507
DO - 10.1111/1462-2920.12507
M3 - Article
VL - 17
SP - 720
EP - 734
JO - Environmental microbiology
JF - Environmental microbiology
SN - 1462-2912
IS - 3
ER -