Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 42 |
Seitenumfang | 15 |
Fachzeitschrift | International Journal of Material Forming |
Jahrgang | 15 |
Ausgabenummer | 3 |
Frühes Online-Datum | 27 Apr. 2022 |
Publikationsstatus | Veröffentlicht - Mai 2022 |
Abstract
Multi-material bulk metal components allow for a resource efficient and functionally structured component design, with a load adaptation achieved in certain functional areas by using similar and dissimilar material combinations. One possibility for the production of hybrid bulk metal components is Tailored Forming, in which pre-joined semi-finished products are hot-formed using novel process chains. By means of Tailored Forming, the properties of the joining zone are geometrically and thermomechanically influenced during the forming process. Based on this motivation, forming processes (die forging, impact extrusion) coupled with adapted inductive heating strategies were designed using numerical simulations and successfully realised in the following work in order to produce demonstrator components with serial or coaxial material arrangements. The quality of the joining zone was investigated through metallographic and SEM imaging, tensile tests and life cycle tests. By selecting suitable materials, it was possible to achieve weight savings of 22% for a pinion shaft and up to 40% for a bearing bush in the material combination of steel and aluminium with sufficient strength for the respective application. It was shown that the intermetallic phases formed after friction welding barely grow during the forming process. By adjusting the heat treatment of the aluminium, the growth of the IMP can also be reduced in this process step. Furthermore, for steel-steel components alloy savings of up to 51% with regard to chromium could be achieved when using low-alloy steel as a substitute for high-alloy steel parts in less loaded sections. The welded microstructure of a cladded bearing washer could be transformed into a homogeneous fine-grained microstructure by forming. The lifetime of tailored formed washers nearly reached those of high-alloyed mono-material components.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Material Forming, Jahrgang 15, Nr. 3, 42, 05.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Tailored Forming of hybrid bulk metal components
AU - Behrens, Bernd Arno
AU - Uhe, Johanna
AU - Ross, Ingo
AU - Peddinghaus, Julius
AU - Ursinus, Jonathan
AU - Matthias, Tim
AU - Bährisch, Susanne
N1 - Funding Information: The results presented in this paper were obtained within the Collaborative Research Centre 1153 “Process chain for the production of hybrid high-performance components through Tailored Forming” in the subprojects B02, B03 and T02 funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB 1153 – 252662854.
PY - 2022/5
Y1 - 2022/5
N2 - Multi-material bulk metal components allow for a resource efficient and functionally structured component design, with a load adaptation achieved in certain functional areas by using similar and dissimilar material combinations. One possibility for the production of hybrid bulk metal components is Tailored Forming, in which pre-joined semi-finished products are hot-formed using novel process chains. By means of Tailored Forming, the properties of the joining zone are geometrically and thermomechanically influenced during the forming process. Based on this motivation, forming processes (die forging, impact extrusion) coupled with adapted inductive heating strategies were designed using numerical simulations and successfully realised in the following work in order to produce demonstrator components with serial or coaxial material arrangements. The quality of the joining zone was investigated through metallographic and SEM imaging, tensile tests and life cycle tests. By selecting suitable materials, it was possible to achieve weight savings of 22% for a pinion shaft and up to 40% for a bearing bush in the material combination of steel and aluminium with sufficient strength for the respective application. It was shown that the intermetallic phases formed after friction welding barely grow during the forming process. By adjusting the heat treatment of the aluminium, the growth of the IMP can also be reduced in this process step. Furthermore, for steel-steel components alloy savings of up to 51% with regard to chromium could be achieved when using low-alloy steel as a substitute for high-alloy steel parts in less loaded sections. The welded microstructure of a cladded bearing washer could be transformed into a homogeneous fine-grained microstructure by forming. The lifetime of tailored formed washers nearly reached those of high-alloyed mono-material components.
AB - Multi-material bulk metal components allow for a resource efficient and functionally structured component design, with a load adaptation achieved in certain functional areas by using similar and dissimilar material combinations. One possibility for the production of hybrid bulk metal components is Tailored Forming, in which pre-joined semi-finished products are hot-formed using novel process chains. By means of Tailored Forming, the properties of the joining zone are geometrically and thermomechanically influenced during the forming process. Based on this motivation, forming processes (die forging, impact extrusion) coupled with adapted inductive heating strategies were designed using numerical simulations and successfully realised in the following work in order to produce demonstrator components with serial or coaxial material arrangements. The quality of the joining zone was investigated through metallographic and SEM imaging, tensile tests and life cycle tests. By selecting suitable materials, it was possible to achieve weight savings of 22% for a pinion shaft and up to 40% for a bearing bush in the material combination of steel and aluminium with sufficient strength for the respective application. It was shown that the intermetallic phases formed after friction welding barely grow during the forming process. By adjusting the heat treatment of the aluminium, the growth of the IMP can also be reduced in this process step. Furthermore, for steel-steel components alloy savings of up to 51% with regard to chromium could be achieved when using low-alloy steel as a substitute for high-alloy steel parts in less loaded sections. The welded microstructure of a cladded bearing washer could be transformed into a homogeneous fine-grained microstructure by forming. The lifetime of tailored formed washers nearly reached those of high-alloyed mono-material components.
KW - Bulk-metal forming
KW - Die forging
KW - Impact extrusion
KW - Joining zone
KW - Multi-material components
KW - Tailored forming
UR - http://www.scopus.com/inward/record.url?scp=85128942447&partnerID=8YFLogxK
U2 - 10.1007/s12289-022-01681-9
DO - 10.1007/s12289-022-01681-9
M3 - Article
AN - SCOPUS:85128942447
VL - 15
JO - International Journal of Material Forming
JF - International Journal of Material Forming
SN - 1960-6206
IS - 3
M1 - 42
ER -