Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 121-135 |
Seitenumfang | 15 |
Fachzeitschrift | Plant molecular biology |
Jahrgang | 98 |
Ausgabenummer | 1-2 |
Frühes Online-Datum | 24 Aug. 2018 |
Publikationsstatus | Veröffentlicht - Sept. 2018 |
Abstract
Metabolic adaptation is crucial for abiotic stress resistance in plants, and accumulation of specific amino acids as well as secondary metabolites derived from amino acid metabolism has been implicated in increased tolerance to adverse environmental conditions. The role of proline, which is synthesized during Arabidopsis stress response to act as a compatible osmolyte, has been well established. However, conclusions drawn about potential functions of other amino acids such as leucine, valine, and isoleucine are not entirely consistent. This study reevaluates published datasets with a special emphasis on changes in the free amino acid pool and transcriptional regulation of the associated anabolic and catabolic pathways. In order to gain a comprehensive overview about the general direction of amino acid metabolism under abiotic stress conditions a complete map of all currently known enzymatic steps involved in amino acid synthesis and degradation was assembled including also the initial steps leading to the synthesis of secondary metabolites. Microarray datasets and amino acid profiles of Arabidopsis plants exposed to dehydration, high salinity, extended darkness, cold, and heat were systematically analyzed to identify trends in fluxes of amino acid metabolism. Some high abundant amino acids such as proline, arginine, asparagine, glutamine, and GABA are synthesized during abiotic stress to act as compatible osmolytes, precursors for secondary metabolites, or storage forms of organic nitrogen. In contrast, most of the low abundant amino acids are not synthesized but they accumulate due to increased protein turnover under conditions inducing carbohydrate starvation (dehydration, salt stress, extended darkness) and are degraded.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
- Biochemie, Genetik und Molekularbiologie (insg.)
- Genetik
- Agrar- und Biowissenschaften (insg.)
- Pflanzenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Plant molecular biology, Jahrgang 98, Nr. 1-2, 09.2018, S. 121-135.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Synthesis versus degradation
T2 - directions of amino acid metabolism during Arabidopsis abiotic stress response
AU - Hildebrandt, Tatjana M.
N1 - Publisher Copyright: © 2018, Springer Nature B.V. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2018/9
Y1 - 2018/9
N2 - Metabolic adaptation is crucial for abiotic stress resistance in plants, and accumulation of specific amino acids as well as secondary metabolites derived from amino acid metabolism has been implicated in increased tolerance to adverse environmental conditions. The role of proline, which is synthesized during Arabidopsis stress response to act as a compatible osmolyte, has been well established. However, conclusions drawn about potential functions of other amino acids such as leucine, valine, and isoleucine are not entirely consistent. This study reevaluates published datasets with a special emphasis on changes in the free amino acid pool and transcriptional regulation of the associated anabolic and catabolic pathways. In order to gain a comprehensive overview about the general direction of amino acid metabolism under abiotic stress conditions a complete map of all currently known enzymatic steps involved in amino acid synthesis and degradation was assembled including also the initial steps leading to the synthesis of secondary metabolites. Microarray datasets and amino acid profiles of Arabidopsis plants exposed to dehydration, high salinity, extended darkness, cold, and heat were systematically analyzed to identify trends in fluxes of amino acid metabolism. Some high abundant amino acids such as proline, arginine, asparagine, glutamine, and GABA are synthesized during abiotic stress to act as compatible osmolytes, precursors for secondary metabolites, or storage forms of organic nitrogen. In contrast, most of the low abundant amino acids are not synthesized but they accumulate due to increased protein turnover under conditions inducing carbohydrate starvation (dehydration, salt stress, extended darkness) and are degraded.
AB - Metabolic adaptation is crucial for abiotic stress resistance in plants, and accumulation of specific amino acids as well as secondary metabolites derived from amino acid metabolism has been implicated in increased tolerance to adverse environmental conditions. The role of proline, which is synthesized during Arabidopsis stress response to act as a compatible osmolyte, has been well established. However, conclusions drawn about potential functions of other amino acids such as leucine, valine, and isoleucine are not entirely consistent. This study reevaluates published datasets with a special emphasis on changes in the free amino acid pool and transcriptional regulation of the associated anabolic and catabolic pathways. In order to gain a comprehensive overview about the general direction of amino acid metabolism under abiotic stress conditions a complete map of all currently known enzymatic steps involved in amino acid synthesis and degradation was assembled including also the initial steps leading to the synthesis of secondary metabolites. Microarray datasets and amino acid profiles of Arabidopsis plants exposed to dehydration, high salinity, extended darkness, cold, and heat were systematically analyzed to identify trends in fluxes of amino acid metabolism. Some high abundant amino acids such as proline, arginine, asparagine, glutamine, and GABA are synthesized during abiotic stress to act as compatible osmolytes, precursors for secondary metabolites, or storage forms of organic nitrogen. In contrast, most of the low abundant amino acids are not synthesized but they accumulate due to increased protein turnover under conditions inducing carbohydrate starvation (dehydration, salt stress, extended darkness) and are degraded.
KW - Abiotic stress
KW - Amino acid profiles
KW - Arabidopsis
KW - Metabolomics
KW - Transcriptomics
UR - http://www.scopus.com/inward/record.url?scp=85052326795&partnerID=8YFLogxK
U2 - 10.1007/s11103-018-0767-0
DO - 10.1007/s11103-018-0767-0
M3 - Article
C2 - 30143990
AN - SCOPUS:85052326795
VL - 98
SP - 121
EP - 135
JO - Plant molecular biology
JF - Plant molecular biology
SN - 0167-4412
IS - 1-2
ER -