Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 688-714 |
Seitenumfang | 27 |
Fachzeitschrift | Beilstein Journal of Nanotechnology |
Jahrgang | 8 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 24 März 2017 |
Abstract
Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs). These graphene-NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO), a graphene-like material, can be easily prepared by reduction of graphene oxide (GO) and therefore offers the possibility to fabricate a large variety of graphene-transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs), sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS) has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene-TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene-TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Beilstein Journal of Nanotechnology, Jahrgang 8, Nr. 1, 24.03.2017, S. 688-714.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields
AU - Jana, Arpita
AU - Scheer, Elke
AU - Polarz, Sebastian
N1 - Publisher Copyright: © 2017 Jana et al. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2017/3/24
Y1 - 2017/3/24
N2 - Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs). These graphene-NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO), a graphene-like material, can be easily prepared by reduction of graphene oxide (GO) and therefore offers the possibility to fabricate a large variety of graphene-transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs), sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS) has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene-TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene-TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined.
AB - Single layer graphite, known as graphene, is an important material because of its unique two-dimensional structure, high conductivity, excellent electron mobility and high surface area. To explore the more prospective properties of graphene, graphene hybrids have been synthesised, where graphene has been integrated with other important nanoparticles (NPs). These graphene-NP hybrid structures are particularly interesting because after hybridisation they not only display the individual properties of graphene and the NPs, but also they exhibit further synergistic properties. Reduced graphene oxide (rGO), a graphene-like material, can be easily prepared by reduction of graphene oxide (GO) and therefore offers the possibility to fabricate a large variety of graphene-transition metal oxide (TMO) NP hybrids. These hybrid materials are promising alternatives to reduce the drawbacks of using only TMO NPs in various applications, such as anode materials in lithium ion batteries (LIBs), sensors, photocatalysts, removal of organic pollutants, etc. Recent studies have shown that a single graphene sheet (GS) has extraordinary electronic transport properties. One possible route to connecting those properties for application in electronics would be to prepare graphene-wrapped TMO NPs. In this critical review, we discuss the development of graphene-TMO hybrids with the detailed account of their synthesis. In addition, attention is given to the wide range of applications. This review covers the details of graphene-TMO hybrid materials and ends with a summary where an outlook on future perspectives to improve the properties of the hybrid materials in view of applications are outlined.
KW - Graphene
KW - Hybrid
KW - Nanoparticle
KW - Reduced graphene oxide
KW - Transition metal oxide
UR - http://www.scopus.com/inward/record.url?scp=85016305365&partnerID=8YFLogxK
U2 - 10.3762/bjnano.8.74
DO - 10.3762/bjnano.8.74
M3 - Article
VL - 8
SP - 688
EP - 714
JO - Beilstein Journal of Nanotechnology
JF - Beilstein Journal of Nanotechnology
SN - 2190-4286
IS - 1
ER -