Symplectic Yang-Mills theory, Ricci tensor, and connections

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Katharina Habermann
  • Lutz Habermann
  • Paul Rosenthal

Organisationseinheiten

Externe Organisationen

  • Niedersächsische Staats- und Universitätsbibliothek Göttingen (SUB Göttingen)
  • Universität Greifswald
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)137-152
Seitenumfang16
FachzeitschriftCalculus of Variations and Partial Differential Equations
Jahrgang30
Ausgabenummer2
Frühes Online-Datum24 Jan. 2007
PublikationsstatusVeröffentlicht - Okt. 2007

Abstract

A Yang-Mills theory in a purely symplectic framework is developed. The corresponding Euler-Lagrange equations are derived and first integrals are given. We relate the results to the work of Bourgeois and Cahen on preferred symplectic connections.

ASJC Scopus Sachgebiete

Zitieren

Symplectic Yang-Mills theory, Ricci tensor, and connections. / Habermann, Katharina; Habermann, Lutz; Rosenthal, Paul.
in: Calculus of Variations and Partial Differential Equations, Jahrgang 30, Nr. 2, 10.2007, S. 137-152.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Habermann K, Habermann L, Rosenthal P. Symplectic Yang-Mills theory, Ricci tensor, and connections. Calculus of Variations and Partial Differential Equations. 2007 Okt;30(2):137-152. Epub 2007 Jan 24. doi: 10.48550/arXiv.math/0604553, 10.1007/s00526-006-0077-2
Habermann, Katharina ; Habermann, Lutz ; Rosenthal, Paul. / Symplectic Yang-Mills theory, Ricci tensor, and connections. in: Calculus of Variations and Partial Differential Equations. 2007 ; Jahrgang 30, Nr. 2. S. 137-152.
Download
@article{b93e3837a6d44b8e9bc6893e1a1f306c,
title = "Symplectic Yang-Mills theory, Ricci tensor, and connections",
abstract = "A Yang-Mills theory in a purely symplectic framework is developed. The corresponding Euler-Lagrange equations are derived and first integrals are given. We relate the results to the work of Bourgeois and Cahen on preferred symplectic connections.",
author = "Katharina Habermann and Lutz Habermann and Paul Rosenthal",
note = "Acknowledgment This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG)",
year = "2007",
month = oct,
doi = "10.48550/arXiv.math/0604553",
language = "English",
volume = "30",
pages = "137--152",
journal = "Calculus of Variations and Partial Differential Equations",
issn = "0944-2669",
publisher = "Springer New York",
number = "2",

}

Download

TY - JOUR

T1 - Symplectic Yang-Mills theory, Ricci tensor, and connections

AU - Habermann, Katharina

AU - Habermann, Lutz

AU - Rosenthal, Paul

N1 - Acknowledgment This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG)

PY - 2007/10

Y1 - 2007/10

N2 - A Yang-Mills theory in a purely symplectic framework is developed. The corresponding Euler-Lagrange equations are derived and first integrals are given. We relate the results to the work of Bourgeois and Cahen on preferred symplectic connections.

AB - A Yang-Mills theory in a purely symplectic framework is developed. The corresponding Euler-Lagrange equations are derived and first integrals are given. We relate the results to the work of Bourgeois and Cahen on preferred symplectic connections.

UR - http://www.scopus.com/inward/record.url?scp=34547345843&partnerID=8YFLogxK

U2 - 10.48550/arXiv.math/0604553

DO - 10.48550/arXiv.math/0604553

M3 - Article

AN - SCOPUS:34547345843

VL - 30

SP - 137

EP - 152

JO - Calculus of Variations and Partial Differential Equations

JF - Calculus of Variations and Partial Differential Equations

SN - 0944-2669

IS - 2

ER -