Symmetry of steady periodic surface water waves with vorticity

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Lund University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)171-181
Seitenumfang11
FachzeitschriftJournal of Fluid Mechanics
Ausgabenummer498
PublikationsstatusVeröffentlicht - 10 Jan. 2004

Abstract

For large classes of vorticities we prove that a steady periodic gravity water wave with a monotonic profile between crests and troughs must be symmetric. The analysis uses sharp maximum principles for elliptic partial differential equations.

ASJC Scopus Sachgebiete

Zitieren

Symmetry of steady periodic surface water waves with vorticity. / Constantin, Adrian; Escher, Joachim.
in: Journal of Fluid Mechanics, Nr. 498, 10.01.2004, S. 171-181.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Constantin A, Escher J. Symmetry of steady periodic surface water waves with vorticity. Journal of Fluid Mechanics. 2004 Jan 10;(498):171-181. doi: 10.1017/S0022112003006773, 10.15488/2705
Download
@article{06a0c741fcd243808e6284fad4c9b350,
title = "Symmetry of steady periodic surface water waves with vorticity",
abstract = "For large classes of vorticities we prove that a steady periodic gravity water wave with a monotonic profile between crests and troughs must be symmetric. The analysis uses sharp maximum principles for elliptic partial differential equations.",
author = "Adrian Constantin and Joachim Escher",
year = "2004",
month = jan,
day = "10",
doi = "10.1017/S0022112003006773",
language = "English",
pages = "171--181",
journal = "Journal of Fluid Mechanics",
issn = "0022-1120",
publisher = "Cambridge University Press",
number = "498",

}

Download

TY - JOUR

T1 - Symmetry of steady periodic surface water waves with vorticity

AU - Constantin, Adrian

AU - Escher, Joachim

PY - 2004/1/10

Y1 - 2004/1/10

N2 - For large classes of vorticities we prove that a steady periodic gravity water wave with a monotonic profile between crests and troughs must be symmetric. The analysis uses sharp maximum principles for elliptic partial differential equations.

AB - For large classes of vorticities we prove that a steady periodic gravity water wave with a monotonic profile between crests and troughs must be symmetric. The analysis uses sharp maximum principles for elliptic partial differential equations.

UR - http://www.scopus.com/inward/record.url?scp=1242299759&partnerID=8YFLogxK

U2 - 10.1017/S0022112003006773

DO - 10.1017/S0022112003006773

M3 - Article

AN - SCOPUS:1242299759

SP - 171

EP - 181

JO - Journal of Fluid Mechanics

JF - Journal of Fluid Mechanics

SN - 0022-1120

IS - 498

ER -

Von denselben Autoren