Symmetric quotient stacks and Heisenberg actions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Andreas Krug

Externe Organisationen

  • Philipps-Universität Marburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)11-22
Seitenumfang12
FachzeitschriftMathematische Zeitschrift
Jahrgang288
Ausgabenummer1-2
Frühes Online-Datum29 März 2017
PublikationsstatusVeröffentlicht - 1 Feb. 2018
Extern publiziertJa

Abstract

For every smooth projective variety X, we construct an action of the Heisenberg algebra on the direct sum of the Grothendieck groups of all the symmetric quotient stacks [ Xn/ Sn] which contains the Fock space as a subrepresentation. The action is induced by functors on the level of the derived categories which form a weak categorification of the action.

ASJC Scopus Sachgebiete

Zitieren

Symmetric quotient stacks and Heisenberg actions. / Krug, Andreas.
in: Mathematische Zeitschrift, Jahrgang 288, Nr. 1-2, 01.02.2018, S. 11-22.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Krug A. Symmetric quotient stacks and Heisenberg actions. Mathematische Zeitschrift. 2018 Feb 1;288(1-2):11-22. Epub 2017 Mär 29. doi: 10.1007/s00209-017-1874-3
Krug, Andreas. / Symmetric quotient stacks and Heisenberg actions. in: Mathematische Zeitschrift. 2018 ; Jahrgang 288, Nr. 1-2. S. 11-22.
Download
@article{42848e94546e44469e5ee7477ccde6a1,
title = "Symmetric quotient stacks and Heisenberg actions",
abstract = "For every smooth projective variety X, we construct an action of the Heisenberg algebra on the direct sum of the Grothendieck groups of all the symmetric quotient stacks [ Xn/ Sn] which contains the Fock space as a subrepresentation. The action is induced by functors on the level of the derived categories which form a weak categorification of the action.",
author = "Andreas Krug",
year = "2018",
month = feb,
day = "1",
doi = "10.1007/s00209-017-1874-3",
language = "English",
volume = "288",
pages = "11--22",
journal = "Mathematische Zeitschrift",
issn = "0025-5874",
publisher = "Springer New York",
number = "1-2",

}

Download

TY - JOUR

T1 - Symmetric quotient stacks and Heisenberg actions

AU - Krug, Andreas

PY - 2018/2/1

Y1 - 2018/2/1

N2 - For every smooth projective variety X, we construct an action of the Heisenberg algebra on the direct sum of the Grothendieck groups of all the symmetric quotient stacks [ Xn/ Sn] which contains the Fock space as a subrepresentation. The action is induced by functors on the level of the derived categories which form a weak categorification of the action.

AB - For every smooth projective variety X, we construct an action of the Heisenberg algebra on the direct sum of the Grothendieck groups of all the symmetric quotient stacks [ Xn/ Sn] which contains the Fock space as a subrepresentation. The action is induced by functors on the level of the derived categories which form a weak categorification of the action.

UR - http://www.scopus.com/inward/record.url?scp=85016442400&partnerID=8YFLogxK

U2 - 10.1007/s00209-017-1874-3

DO - 10.1007/s00209-017-1874-3

M3 - Article

AN - SCOPUS:85016442400

VL - 288

SP - 11

EP - 22

JO - Mathematische Zeitschrift

JF - Mathematische Zeitschrift

SN - 0025-5874

IS - 1-2

ER -