Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 11-22 |
Seitenumfang | 12 |
Fachzeitschrift | Mathematische Zeitschrift |
Jahrgang | 288 |
Ausgabenummer | 1-2 |
Frühes Online-Datum | 29 März 2017 |
Publikationsstatus | Veröffentlicht - 1 Feb. 2018 |
Extern publiziert | Ja |
Abstract
For every smooth projective variety X, we construct an action of the Heisenberg algebra on the direct sum of the Grothendieck groups of all the symmetric quotient stacks [ Xn/ Sn] which contains the Fock space as a subrepresentation. The action is induced by functors on the level of the derived categories which form a weak categorification of the action.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Zeitschrift, Jahrgang 288, Nr. 1-2, 01.02.2018, S. 11-22.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Symmetric quotient stacks and Heisenberg actions
AU - Krug, Andreas
PY - 2018/2/1
Y1 - 2018/2/1
N2 - For every smooth projective variety X, we construct an action of the Heisenberg algebra on the direct sum of the Grothendieck groups of all the symmetric quotient stacks [ Xn/ Sn] which contains the Fock space as a subrepresentation. The action is induced by functors on the level of the derived categories which form a weak categorification of the action.
AB - For every smooth projective variety X, we construct an action of the Heisenberg algebra on the direct sum of the Grothendieck groups of all the symmetric quotient stacks [ Xn/ Sn] which contains the Fock space as a subrepresentation. The action is induced by functors on the level of the derived categories which form a weak categorification of the action.
UR - http://www.scopus.com/inward/record.url?scp=85016442400&partnerID=8YFLogxK
U2 - 10.1007/s00209-017-1874-3
DO - 10.1007/s00209-017-1874-3
M3 - Article
AN - SCOPUS:85016442400
VL - 288
SP - 11
EP - 22
JO - Mathematische Zeitschrift
JF - Mathematische Zeitschrift
SN - 0025-5874
IS - 1-2
ER -