Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 387-394 |
Seitenumfang | 8 |
Fachzeitschrift | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Jahrgang | 3 |
Publikationsstatus | Veröffentlicht - 6 Juni 2016 |
Veranstaltung | 23rd International Society for Photogrammetry and Remote Sensing Congress, ISPRS 2016 - Prague, Tschechische Republik Dauer: 12 Juli 2016 → 19 Juli 2016 |
Abstract
Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Erdkunde und Planetologie (sonstige)
- Umweltwissenschaften (insg.)
- Umweltwissenschaften (sonstige)
- Physik und Astronomie (insg.)
- Instrumentierung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Jahrgang 3, 06.06.2016, S. 387-394.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - SUPERPIXEL CUT for FIGURE-GROUND IMAGE SEGMENTATION
AU - Yang, Michael Ying
AU - Rosenhahn, Bodo
PY - 2016/6/6
Y1 - 2016/6/6
N2 - Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.
AB - Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.
KW - Computer Vision
KW - Image Segmentation
KW - Min-Cut
KW - Superpixel Cut
UR - http://www.scopus.com/inward/record.url?scp=85048442460&partnerID=8YFLogxK
U2 - 10.5194/isprs-annals-III-3-387-2016
DO - 10.5194/isprs-annals-III-3-387-2016
M3 - Conference article
AN - SCOPUS:85048442460
VL - 3
SP - 387
EP - 394
JO - ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
JF - ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
SN - 2194-9042
T2 - 23rd International Society for Photogrammetry and Remote Sensing Congress, ISPRS 2016
Y2 - 12 July 2016 through 19 July 2016
ER -