Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 102-114 |
Seitenumfang | 13 |
Fachzeitschrift | Earth and Planetary Science Letters |
Jahrgang | 448 |
Frühes Online-Datum | 30 Mai 2016 |
Publikationsstatus | Veröffentlicht - 15 Aug. 2016 |
Abstract
Chemical data from the MESSENGER spacecraft revealed that surface rocks on Mercury are unusually enriched in sulfur compared to samples from other terrestrial planets. In order to understand the speciation and distribution of sulfur on Mercury, we performed high temperature (1200–1750 °C), low- to high-pressure (1 bar to 4 GPa) experiments on compositions representative of Mercurian lavas and on the silicate composition of an enstatite chondrite. We equilibrated silicate melts with sulfide and metallic melts under highly reducing conditions (IW-1.5 to IW-9.4; IW = iron-wüstite oxygen fugacity buffer). Under these oxygen fugacity conditions, sulfur dissolves in the silicate melt as S2− and forms complexes with Fe2+, Mg2+ and Ca2+. The sulfur concentration in silicate melts at sulfide saturation (SCSS) increases with increasing reducing conditions (from <1 wt.% S at IW-2 to >10 wt.% S at IW-8) and with increasing temperature. Metallic melts have a low sulfur content which decreases from 3 wt.% at IW-2 to 0 wt.% at IW-9. We developed an empirical parameterization to predict SCSS in Mercurian magmas as a function of oxygen fugacity (fO2), temperature, pressure and silicate melt composition. SCSS being not strictly a redox reaction, our expression is fully valid for magmatic systems containing a metal phase. Using physical constraints of the Mercurian mantle and magmas as well as our experimental results, we suggest that basalts on Mercury were free of sulfide globules when they erupted. The high sulfur contents revealed by MESSENGER result from the high sulfur solubility in silicate melt at reducing conditions. We make the realistic assumption that the oxygen fugacity of mantle rocks was set during equilibration of the magma ocean with the core and/or that the mantle contains a minor metal phase and combine our parameterization of SCSS with chemical data from MESSENGER to constrain the oxygen fugacity of Mercury's interior to IW-5.4±0.4. We also calculate that the mantle of Mercury contains 7–11 wt.% S and that the metallic core of the planet has little sulfur (<1.5 wt.% S). The external part of the Mercurian core is likely to be made up of a thin (<90 km) FeS layer.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Geophysik
- Erdkunde und Planetologie (insg.)
- Geochemie und Petrologie
- Erdkunde und Planetologie (insg.)
- Erdkunde und Planetologie (sonstige)
- Erdkunde und Planetologie (insg.)
- Astronomie und Planetologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Earth and Planetary Science Letters, Jahrgang 448, 15.08.2016, S. 102-114.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Sulfur solubility in reduced mafic silicate melts
T2 - Implications for the speciation and distribution of sulfur on Mercury
AU - Namur, Olivier
AU - Charlier, Bernard
AU - Holtz, Francois
AU - Cartier, Camille
AU - McCammon, Catherine
N1 - Funding Information: ON acknowledges support from the von Humboldt Foundation and from a Marie Curie Intra-European Fellowship ( SULFURONMERCURY – 327046 ). ON also acknowledges support from the DFG Core Facility for High-Pressure Research from the German Science Foundation ( KE 501/10-1 ) for the high-pressure experiments (BGI). BC was supported by the von Humboldt Foundation , a BELSPO Grant, and the BRAIN-be program (BR/143/A2/COME-IN). A.M. Welsch is thanked for her help with Raman spectroscopy and D. Lattard for sharing her expertise with evacuated silica tubes. We appreciate comments from C. Sotin (editor), F. Gaillard and an anonymous reviewer that significantly improved the quality of the paper. Publisher Copyright: © 2016 Elsevier B.V. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2016/8/15
Y1 - 2016/8/15
N2 - Chemical data from the MESSENGER spacecraft revealed that surface rocks on Mercury are unusually enriched in sulfur compared to samples from other terrestrial planets. In order to understand the speciation and distribution of sulfur on Mercury, we performed high temperature (1200–1750 °C), low- to high-pressure (1 bar to 4 GPa) experiments on compositions representative of Mercurian lavas and on the silicate composition of an enstatite chondrite. We equilibrated silicate melts with sulfide and metallic melts under highly reducing conditions (IW-1.5 to IW-9.4; IW = iron-wüstite oxygen fugacity buffer). Under these oxygen fugacity conditions, sulfur dissolves in the silicate melt as S2− and forms complexes with Fe2+, Mg2+ and Ca2+. The sulfur concentration in silicate melts at sulfide saturation (SCSS) increases with increasing reducing conditions (from <1 wt.% S at IW-2 to >10 wt.% S at IW-8) and with increasing temperature. Metallic melts have a low sulfur content which decreases from 3 wt.% at IW-2 to 0 wt.% at IW-9. We developed an empirical parameterization to predict SCSS in Mercurian magmas as a function of oxygen fugacity (fO2), temperature, pressure and silicate melt composition. SCSS being not strictly a redox reaction, our expression is fully valid for magmatic systems containing a metal phase. Using physical constraints of the Mercurian mantle and magmas as well as our experimental results, we suggest that basalts on Mercury were free of sulfide globules when they erupted. The high sulfur contents revealed by MESSENGER result from the high sulfur solubility in silicate melt at reducing conditions. We make the realistic assumption that the oxygen fugacity of mantle rocks was set during equilibration of the magma ocean with the core and/or that the mantle contains a minor metal phase and combine our parameterization of SCSS with chemical data from MESSENGER to constrain the oxygen fugacity of Mercury's interior to IW-5.4±0.4. We also calculate that the mantle of Mercury contains 7–11 wt.% S and that the metallic core of the planet has little sulfur (<1.5 wt.% S). The external part of the Mercurian core is likely to be made up of a thin (<90 km) FeS layer.
AB - Chemical data from the MESSENGER spacecraft revealed that surface rocks on Mercury are unusually enriched in sulfur compared to samples from other terrestrial planets. In order to understand the speciation and distribution of sulfur on Mercury, we performed high temperature (1200–1750 °C), low- to high-pressure (1 bar to 4 GPa) experiments on compositions representative of Mercurian lavas and on the silicate composition of an enstatite chondrite. We equilibrated silicate melts with sulfide and metallic melts under highly reducing conditions (IW-1.5 to IW-9.4; IW = iron-wüstite oxygen fugacity buffer). Under these oxygen fugacity conditions, sulfur dissolves in the silicate melt as S2− and forms complexes with Fe2+, Mg2+ and Ca2+. The sulfur concentration in silicate melts at sulfide saturation (SCSS) increases with increasing reducing conditions (from <1 wt.% S at IW-2 to >10 wt.% S at IW-8) and with increasing temperature. Metallic melts have a low sulfur content which decreases from 3 wt.% at IW-2 to 0 wt.% at IW-9. We developed an empirical parameterization to predict SCSS in Mercurian magmas as a function of oxygen fugacity (fO2), temperature, pressure and silicate melt composition. SCSS being not strictly a redox reaction, our expression is fully valid for magmatic systems containing a metal phase. Using physical constraints of the Mercurian mantle and magmas as well as our experimental results, we suggest that basalts on Mercury were free of sulfide globules when they erupted. The high sulfur contents revealed by MESSENGER result from the high sulfur solubility in silicate melt at reducing conditions. We make the realistic assumption that the oxygen fugacity of mantle rocks was set during equilibration of the magma ocean with the core and/or that the mantle contains a minor metal phase and combine our parameterization of SCSS with chemical data from MESSENGER to constrain the oxygen fugacity of Mercury's interior to IW-5.4±0.4. We also calculate that the mantle of Mercury contains 7–11 wt.% S and that the metallic core of the planet has little sulfur (<1.5 wt.% S). The external part of the Mercurian core is likely to be made up of a thin (<90 km) FeS layer.
KW - core
KW - mantle
KW - MESSENGER
KW - oxygen fugacity
KW - sulfide saturation
UR - http://www.scopus.com/inward/record.url?scp=84988358007&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2016.05.024
DO - 10.1016/j.epsl.2016.05.024
M3 - Article
AN - SCOPUS:84988358007
VL - 448
SP - 102
EP - 114
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
SN - 0012-821X
ER -