Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1269-1279 |
Seitenumfang | 11 |
Fachzeitschrift | Documenta mathematica |
Jahrgang | 29 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 26 Nov. 2024 |
Abstract
Working constructively throughout, we introduce the notion of sufficient convexity for functions and sets and study its implications on the existence of best approximations of points in sets and of sets mutually.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Documenta mathematica, Jahrgang 29, Nr. 6, 26.11.2024, S. 1269-1279.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Sufficient convexity and best approximation
AU - Berger, Josef
AU - Bridges, Douglas S.
AU - Svindland, Gregor
N1 - Publisher Copyright: © 2024, European Mathematical Society Publishing House. All rights reserved.
PY - 2024/11/26
Y1 - 2024/11/26
N2 - Working constructively throughout, we introduce the notion of sufficient convexity for functions and sets and study its implications on the existence of best approximations of points in sets and of sets mutually.
AB - Working constructively throughout, we introduce the notion of sufficient convexity for functions and sets and study its implications on the existence of best approximations of points in sets and of sets mutually.
KW - best approximation
KW - constructive analysis
KW - sufficiently convex functions
KW - sufficiently convex sets
KW - uniform rotundity
UR - http://www.scopus.com/inward/record.url?scp=85211173701&partnerID=8YFLogxK
U2 - 10.4171/DM/985
DO - 10.4171/DM/985
M3 - Article
AN - SCOPUS:85211173701
VL - 29
SP - 1269
EP - 1279
JO - Documenta mathematica
JF - Documenta mathematica
SN - 1431-0635
IS - 6
ER -