Loading [MathJax]/extensions/tex2jax.js

Struktur- und anzahlformeln für topologien auf endlichen mengen

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Marcel Erné

Externe Organisationen

  • Westfälische Wilhelms-Universität Münster (WWU)

Details

OriginalspracheDeutsch
Seiten (von - bis)221-259
Seitenumfang39
FachzeitschriftManuscripta mathematica
Jahrgang11
Ausgabenummer3
PublikationsstatusVeröffentlicht - Sept. 1974

Abstract

Every topology τ on the finite set X={x1,...,xN} has a minimal base Μ(τ); separation axioms and connectivity are simply characterized; further we obtain a recursive construction of finite topologies. In the second section we give some formulae connecting A(N) (the number of topologies on X), Z(N) (the number of connected topologies on X) and associated numbers. The theory of representation matrices discussed in the third section leads to an easy description of many topological notions as closure operator, induced topology, connectivity; it also yields some more combinatorial formulae. In the last part we improve the remainder term R(N)=Id A(N)-1/4(N)2=0(N3/2ld N) given by Kleitman and Rothschild to 0(N·ld2N). Then, among many other asymptotical results, we show that A(N) and Z(N) are asymptotically equal.

ASJC Scopus Sachgebiete

Zitieren

Struktur- und anzahlformeln für topologien auf endlichen mengen. / Erné, Marcel.
in: Manuscripta mathematica, Jahrgang 11, Nr. 3, 09.1974, S. 221-259.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Erné M. Struktur- und anzahlformeln für topologien auf endlichen mengen. Manuscripta mathematica. 1974 Sep;11(3):221-259. doi: 10.1007/BF01173716
Erné, Marcel. / Struktur- und anzahlformeln für topologien auf endlichen mengen. in: Manuscripta mathematica. 1974 ; Jahrgang 11, Nr. 3. S. 221-259.
Download
@article{3efb20b66ab541f7842bc35aa12628a1,
title = "Struktur- und anzahlformeln f{\"u}r topologien auf endlichen mengen",
abstract = "Every topology τ on the finite set X={x1,...,xN} has a minimal base Μ(τ); separation axioms and connectivity are simply characterized; further we obtain a recursive construction of finite topologies. In the second section we give some formulae connecting A(N) (the number of topologies on X), Z(N) (the number of connected topologies on X) and associated numbers. The theory of representation matrices discussed in the third section leads to an easy description of many topological notions as closure operator, induced topology, connectivity; it also yields some more combinatorial formulae. In the last part we improve the remainder term R(N)=Id A(N)-1/4(N)2=0(N3/2ld N) given by Kleitman and Rothschild to 0(N·ld2N). Then, among many other asymptotical results, we show that A(N) and Z(N) are asymptotically equal.",
author = "Marcel Ern{\'e}",
year = "1974",
month = sep,
doi = "10.1007/BF01173716",
language = "Deutsch",
volume = "11",
pages = "221--259",
journal = "Manuscripta mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "3",

}

Download

TY - JOUR

T1 - Struktur- und anzahlformeln für topologien auf endlichen mengen

AU - Erné, Marcel

PY - 1974/9

Y1 - 1974/9

N2 - Every topology τ on the finite set X={x1,...,xN} has a minimal base Μ(τ); separation axioms and connectivity are simply characterized; further we obtain a recursive construction of finite topologies. In the second section we give some formulae connecting A(N) (the number of topologies on X), Z(N) (the number of connected topologies on X) and associated numbers. The theory of representation matrices discussed in the third section leads to an easy description of many topological notions as closure operator, induced topology, connectivity; it also yields some more combinatorial formulae. In the last part we improve the remainder term R(N)=Id A(N)-1/4(N)2=0(N3/2ld N) given by Kleitman and Rothschild to 0(N·ld2N). Then, among many other asymptotical results, we show that A(N) and Z(N) are asymptotically equal.

AB - Every topology τ on the finite set X={x1,...,xN} has a minimal base Μ(τ); separation axioms and connectivity are simply characterized; further we obtain a recursive construction of finite topologies. In the second section we give some formulae connecting A(N) (the number of topologies on X), Z(N) (the number of connected topologies on X) and associated numbers. The theory of representation matrices discussed in the third section leads to an easy description of many topological notions as closure operator, induced topology, connectivity; it also yields some more combinatorial formulae. In the last part we improve the remainder term R(N)=Id A(N)-1/4(N)2=0(N3/2ld N) given by Kleitman and Rothschild to 0(N·ld2N). Then, among many other asymptotical results, we show that A(N) and Z(N) are asymptotically equal.

UR - http://www.scopus.com/inward/record.url?scp=19544362788&partnerID=8YFLogxK

U2 - 10.1007/BF01173716

DO - 10.1007/BF01173716

M3 - Artikel

AN - SCOPUS:19544362788

VL - 11

SP - 221

EP - 259

JO - Manuscripta mathematica

JF - Manuscripta mathematica

SN - 0025-2611

IS - 3

ER -