Details
Originalsprache | Englisch |
---|---|
Fachzeitschrift | Physical Review B - Condensed Matter and Materials Physics |
Jahrgang | 69 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 22 Jan. 2004 |
Extern publiziert | Ja |
Abstract
We analyze the core structure of the carrier-lifetime-reducing boron- and oxygen-related metastable defect center in crystalline silicon by measuring the correlation of the defect concentration with the boron and the oxygen contents on a large number of different silicon materials. The experimental results indicate that the defect is composed of one substitutional boron and two interstitial oxygen atoms. Formation and annihilation of the metastable boron-oxygen complex are found to be thermally activated processes, characterized by two strongly differing activation energies. Measurements of the defect generation rate as a function of light intensity show that the defect generation rate increases proportionally with light intensity below 1 mW/cm2 and saturates at higher intensities. All experimental results can be consistently explained using a defect reaction model based on fast-diffusing oxygen dimers (O2i), which are captured by substitutional boron (Bs) to form a metastable Bs - O2i complex. Based on this model, new strategies for an effective reduction of the light degradation of solar cells made on oxygen-rich silicon materials are derived. The model also explains why no lifetime degradation is observed in aluminum-, gallium-, and indium-doped oxygen-rich silicon.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review B - Condensed Matter and Materials Physics, Jahrgang 69, Nr. 2, 22.01.2004.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon
AU - Schmidt, Jan
AU - Bothe, Karsten
PY - 2004/1/22
Y1 - 2004/1/22
N2 - We analyze the core structure of the carrier-lifetime-reducing boron- and oxygen-related metastable defect center in crystalline silicon by measuring the correlation of the defect concentration with the boron and the oxygen contents on a large number of different silicon materials. The experimental results indicate that the defect is composed of one substitutional boron and two interstitial oxygen atoms. Formation and annihilation of the metastable boron-oxygen complex are found to be thermally activated processes, characterized by two strongly differing activation energies. Measurements of the defect generation rate as a function of light intensity show that the defect generation rate increases proportionally with light intensity below 1 mW/cm2 and saturates at higher intensities. All experimental results can be consistently explained using a defect reaction model based on fast-diffusing oxygen dimers (O2i), which are captured by substitutional boron (Bs) to form a metastable Bs - O2i complex. Based on this model, new strategies for an effective reduction of the light degradation of solar cells made on oxygen-rich silicon materials are derived. The model also explains why no lifetime degradation is observed in aluminum-, gallium-, and indium-doped oxygen-rich silicon.
AB - We analyze the core structure of the carrier-lifetime-reducing boron- and oxygen-related metastable defect center in crystalline silicon by measuring the correlation of the defect concentration with the boron and the oxygen contents on a large number of different silicon materials. The experimental results indicate that the defect is composed of one substitutional boron and two interstitial oxygen atoms. Formation and annihilation of the metastable boron-oxygen complex are found to be thermally activated processes, characterized by two strongly differing activation energies. Measurements of the defect generation rate as a function of light intensity show that the defect generation rate increases proportionally with light intensity below 1 mW/cm2 and saturates at higher intensities. All experimental results can be consistently explained using a defect reaction model based on fast-diffusing oxygen dimers (O2i), which are captured by substitutional boron (Bs) to form a metastable Bs - O2i complex. Based on this model, new strategies for an effective reduction of the light degradation of solar cells made on oxygen-rich silicon materials are derived. The model also explains why no lifetime degradation is observed in aluminum-, gallium-, and indium-doped oxygen-rich silicon.
UR - http://www.scopus.com/inward/record.url?scp=1442337113&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.69.024107
DO - 10.1103/PhysRevB.69.024107
M3 - Article
AN - SCOPUS:1442337113
VL - 69
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
SN - 1098-0121
IS - 2
ER -