Loading [MathJax]/extensions/tex2jax.js

Strongly symmetric smooth toric varieties

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Externe Organisationen

  • Technische Universität Kaiserslautern

Details

OriginalspracheEnglisch
Seiten (von - bis)597-620
Seitenumfang24
FachzeitschriftKyoto journal of mathematics
Jahrgang52
Ausgabenummer3
PublikationsstatusVeröffentlicht - 1 Sept. 2012
Extern publiziertJa

Abstract

We investigate toric varieties defined by arrangements of hyperplanes and call them strongly symmetric. The smoothness of such a toric variety translates to the fact that the arrangement is crystallographic. As a result, we obtain a complete classification of this class of toric varieties. Further, we show that these varieties are projective and describe associated toric arrangements in these varieties.

ASJC Scopus Sachgebiete

Zitieren

Strongly symmetric smooth toric varieties. / Cuntz, M.; Ren, Y.; Trautmann, G.
in: Kyoto journal of mathematics, Jahrgang 52, Nr. 3, 01.09.2012, S. 597-620.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cuntz M, Ren Y, Trautmann G. Strongly symmetric smooth toric varieties. Kyoto journal of mathematics. 2012 Sep 1;52(3):597-620. doi: 10.1215/21562261-1625208
Cuntz, M. ; Ren, Y. ; Trautmann, G. / Strongly symmetric smooth toric varieties. in: Kyoto journal of mathematics. 2012 ; Jahrgang 52, Nr. 3. S. 597-620.
Download
@article{44ccceeb5d1641b5bb3a9bb37948c0c5,
title = "Strongly symmetric smooth toric varieties",
abstract = "We investigate toric varieties defined by arrangements of hyperplanes and call them strongly symmetric. The smoothness of such a toric variety translates to the fact that the arrangement is crystallographic. As a result, we obtain a complete classification of this class of toric varieties. Further, we show that these varieties are projective and describe associated toric arrangements in these varieties.",
author = "M. Cuntz and Y. Ren and G. Trautmann",
year = "2012",
month = sep,
day = "1",
doi = "10.1215/21562261-1625208",
language = "English",
volume = "52",
pages = "597--620",
journal = "Kyoto journal of mathematics",
issn = "2156-2261",
publisher = "Kyoto University",
number = "3",

}

Download

TY - JOUR

T1 - Strongly symmetric smooth toric varieties

AU - Cuntz, M.

AU - Ren, Y.

AU - Trautmann, G.

PY - 2012/9/1

Y1 - 2012/9/1

N2 - We investigate toric varieties defined by arrangements of hyperplanes and call them strongly symmetric. The smoothness of such a toric variety translates to the fact that the arrangement is crystallographic. As a result, we obtain a complete classification of this class of toric varieties. Further, we show that these varieties are projective and describe associated toric arrangements in these varieties.

AB - We investigate toric varieties defined by arrangements of hyperplanes and call them strongly symmetric. The smoothness of such a toric variety translates to the fact that the arrangement is crystallographic. As a result, we obtain a complete classification of this class of toric varieties. Further, we show that these varieties are projective and describe associated toric arrangements in these varieties.

UR - http://www.scopus.com/inward/record.url?scp=84879766894&partnerID=8YFLogxK

U2 - 10.1215/21562261-1625208

DO - 10.1215/21562261-1625208

M3 - Article

AN - SCOPUS:84879766894

VL - 52

SP - 597

EP - 620

JO - Kyoto journal of mathematics

JF - Kyoto journal of mathematics

SN - 2156-2261

IS - 3

ER -

Von denselben Autoren