Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Progress in Polymers in Concrete |
Seiten | 403-408 |
Seitenumfang | 6 |
Publikationsstatus | Veröffentlicht - 2013 |
Veranstaltung | 14th International Congress on Polymers in Concrete, ICPIC 2013 - Shanghai, China Dauer: 17 Apr. 2013 → 20 Apr. 2013 |
Publikationsreihe
Name | Advanced Materials Research |
---|---|
Band | 687 |
ISSN (Print) | 1022-6680 |
Abstract
Corrosion protection is absolutely essential for offshore steel constructions. As an alternative to the conventional corrosion protection systems, a thin layer of high-performance mortar (HPM) could be applied around the steel tower to protect it against the harsh marine conditions. In order to produce such a mineral system, a dense mortar with a high durability against chlorides, frost and abrasion should be designed. Furthermore, the application techniques of the corrosion protection systems require a mortar with high fluidity and high segregation resistance. This is achieved by using a high content of cement and through the addition of pozzolanic additives, such as fly ash and silica fume. However, the risk of autogenous shrinkage also rises with the increasing content of cement and silica fume, leading to microcracks in the mineral corrosion protection layer. The occurrence of cracks ultimately leads to an increased chloride and water ingress. The main objective of this research work is to improve the shrinkage behaviour of the HPM by using several admixtures. In addition to superabsorbent polymers (SAP), the effects of a shrinkage-reducing admixture (SRA) were investigated. Some conclusions were drawn about the effects of these admixtures based on the linear shrinkage strain, which was measured using a shrinkage cone. Furthermore, it is supposed that the SAPs have a positive influence on the mortar's durability by interrupting the capillary pore structure in the hardened mortar. After hydration, the initial water-filled SAPs leave small well-distributed pores inside the hardened cement, thereby increasing the resistance against water and chloride ingress. Moreover, the remaining air voids provide additional room to accommodate the volume increment during frost periods. Both, the reductions of the autogenous shrinkage and the increased resistance against ingress of chlorides and water will be discussed in this paper.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Progress in Polymers in Concrete. 2013. S. 403-408 (Advanced Materials Research; Band 687).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Strategies for optimizing mineral corrosion protection mortars used in a sea-water environment
AU - Weicken, Hannes
AU - Lohaus, Ludger
PY - 2013
Y1 - 2013
N2 - Corrosion protection is absolutely essential for offshore steel constructions. As an alternative to the conventional corrosion protection systems, a thin layer of high-performance mortar (HPM) could be applied around the steel tower to protect it against the harsh marine conditions. In order to produce such a mineral system, a dense mortar with a high durability against chlorides, frost and abrasion should be designed. Furthermore, the application techniques of the corrosion protection systems require a mortar with high fluidity and high segregation resistance. This is achieved by using a high content of cement and through the addition of pozzolanic additives, such as fly ash and silica fume. However, the risk of autogenous shrinkage also rises with the increasing content of cement and silica fume, leading to microcracks in the mineral corrosion protection layer. The occurrence of cracks ultimately leads to an increased chloride and water ingress. The main objective of this research work is to improve the shrinkage behaviour of the HPM by using several admixtures. In addition to superabsorbent polymers (SAP), the effects of a shrinkage-reducing admixture (SRA) were investigated. Some conclusions were drawn about the effects of these admixtures based on the linear shrinkage strain, which was measured using a shrinkage cone. Furthermore, it is supposed that the SAPs have a positive influence on the mortar's durability by interrupting the capillary pore structure in the hardened mortar. After hydration, the initial water-filled SAPs leave small well-distributed pores inside the hardened cement, thereby increasing the resistance against water and chloride ingress. Moreover, the remaining air voids provide additional room to accommodate the volume increment during frost periods. Both, the reductions of the autogenous shrinkage and the increased resistance against ingress of chlorides and water will be discussed in this paper.
AB - Corrosion protection is absolutely essential for offshore steel constructions. As an alternative to the conventional corrosion protection systems, a thin layer of high-performance mortar (HPM) could be applied around the steel tower to protect it against the harsh marine conditions. In order to produce such a mineral system, a dense mortar with a high durability against chlorides, frost and abrasion should be designed. Furthermore, the application techniques of the corrosion protection systems require a mortar with high fluidity and high segregation resistance. This is achieved by using a high content of cement and through the addition of pozzolanic additives, such as fly ash and silica fume. However, the risk of autogenous shrinkage also rises with the increasing content of cement and silica fume, leading to microcracks in the mineral corrosion protection layer. The occurrence of cracks ultimately leads to an increased chloride and water ingress. The main objective of this research work is to improve the shrinkage behaviour of the HPM by using several admixtures. In addition to superabsorbent polymers (SAP), the effects of a shrinkage-reducing admixture (SRA) were investigated. Some conclusions were drawn about the effects of these admixtures based on the linear shrinkage strain, which was measured using a shrinkage cone. Furthermore, it is supposed that the SAPs have a positive influence on the mortar's durability by interrupting the capillary pore structure in the hardened mortar. After hydration, the initial water-filled SAPs leave small well-distributed pores inside the hardened cement, thereby increasing the resistance against water and chloride ingress. Moreover, the remaining air voids provide additional room to accommodate the volume increment during frost periods. Both, the reductions of the autogenous shrinkage and the increased resistance against ingress of chlorides and water will be discussed in this paper.
KW - Autogenous shrinkage
KW - Chloride migration
KW - Durability
KW - Frost resistance
KW - High performance mortar
UR - http://www.scopus.com/inward/record.url?scp=84878251745&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.687.403
DO - 10.4028/www.scientific.net/AMR.687.403
M3 - Conference contribution
AN - SCOPUS:84878251745
SN - 9783037856802
T3 - Advanced Materials Research
SP - 403
EP - 408
BT - Progress in Polymers in Concrete
T2 - 14th International Congress on Polymers in Concrete, ICPIC 2013
Y2 - 17 April 2013 through 20 April 2013
ER -