Strange Duality Between Hypersurface and Complete Intersection Singularities

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Wolfgang Ebeling
  • Atsushi Takahashi

Organisationseinheiten

Externe Organisationen

  • Osaka University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)277-298
Seitenumfang22
FachzeitschriftArnold Mathematical Journal
Jahrgang2
Ausgabenummer3
PublikationsstatusVeröffentlicht - 1 Sept. 2016

Abstract

W. Ebeling and C. T. C. Wall discovered an extension of Arnold’s strange duality embracing on one hand series of bimodal hypersurface singularities and on the other, isolated complete intersection singularities. In this paper, we derive this duality from the mirror symmetry and the Berglund–Hübsch transposition of invertible polynomials.

ASJC Scopus Sachgebiete

Zitieren

Strange Duality Between Hypersurface and Complete Intersection Singularities. / Ebeling, Wolfgang; Takahashi, Atsushi.
in: Arnold Mathematical Journal, Jahrgang 2, Nr. 3, 01.09.2016, S. 277-298.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ebeling, W & Takahashi, A 2016, 'Strange Duality Between Hypersurface and Complete Intersection Singularities', Arnold Mathematical Journal, Jg. 2, Nr. 3, S. 277-298. https://doi.org/10.1007/s40598-016-0044-8
Ebeling, W., & Takahashi, A. (2016). Strange Duality Between Hypersurface and Complete Intersection Singularities. Arnold Mathematical Journal, 2(3), 277-298. https://doi.org/10.1007/s40598-016-0044-8
Ebeling W, Takahashi A. Strange Duality Between Hypersurface and Complete Intersection Singularities. Arnold Mathematical Journal. 2016 Sep 1;2(3):277-298. doi: 10.1007/s40598-016-0044-8
Ebeling, Wolfgang ; Takahashi, Atsushi. / Strange Duality Between Hypersurface and Complete Intersection Singularities. in: Arnold Mathematical Journal. 2016 ; Jahrgang 2, Nr. 3. S. 277-298.
Download
@article{f1adb90f4e1245f5a9a20068e42def81,
title = "Strange Duality Between Hypersurface and Complete Intersection Singularities",
abstract = "W. Ebeling and C. T. C. Wall discovered an extension of Arnold{\textquoteright}s strange duality embracing on one hand series of bimodal hypersurface singularities and on the other, isolated complete intersection singularities. In this paper, we derive this duality from the mirror symmetry and the Berglund–H{\"u}bsch transposition of invertible polynomials.",
keywords = "Dolgachev numbers, Gabrielov numbers, Invertible polynomial, Mirror symmetry, Singularity, Strange duality",
author = "Wolfgang Ebeling and Atsushi Takahashi",
note = "Funding information: Partially supported by the DFG-programme SPP1388 “Representation Theory” and by JSPS KAKENHI Grant Numbers 24684005 and 16H02146.",
year = "2016",
month = sep,
day = "1",
doi = "10.1007/s40598-016-0044-8",
language = "English",
volume = "2",
pages = "277--298",
number = "3",

}

Download

TY - JOUR

T1 - Strange Duality Between Hypersurface and Complete Intersection Singularities

AU - Ebeling, Wolfgang

AU - Takahashi, Atsushi

N1 - Funding information: Partially supported by the DFG-programme SPP1388 “Representation Theory” and by JSPS KAKENHI Grant Numbers 24684005 and 16H02146.

PY - 2016/9/1

Y1 - 2016/9/1

N2 - W. Ebeling and C. T. C. Wall discovered an extension of Arnold’s strange duality embracing on one hand series of bimodal hypersurface singularities and on the other, isolated complete intersection singularities. In this paper, we derive this duality from the mirror symmetry and the Berglund–Hübsch transposition of invertible polynomials.

AB - W. Ebeling and C. T. C. Wall discovered an extension of Arnold’s strange duality embracing on one hand series of bimodal hypersurface singularities and on the other, isolated complete intersection singularities. In this paper, we derive this duality from the mirror symmetry and the Berglund–Hübsch transposition of invertible polynomials.

KW - Dolgachev numbers

KW - Gabrielov numbers

KW - Invertible polynomial

KW - Mirror symmetry

KW - Singularity

KW - Strange duality

UR - http://www.scopus.com/inward/record.url?scp=85034668020&partnerID=8YFLogxK

UR - https://arxiv.org/abs/1508.02226

U2 - 10.1007/s40598-016-0044-8

DO - 10.1007/s40598-016-0044-8

M3 - Article

AN - SCOPUS:85034668020

VL - 2

SP - 277

EP - 298

JO - Arnold Mathematical Journal

JF - Arnold Mathematical Journal

SN - 2199-6792

IS - 3

ER -