Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 105188 |
Seitenumfang | 21 |
Fachzeitschrift | International Journal of Impact Engineering |
Jahrgang | 197 |
Frühes Online-Datum | 22 Nov. 2024 |
Publikationsstatus | Veröffentlicht - März 2025 |
Abstract
Concrete structures are commonly exposed to dynamic loads spanning a wide range of strain rates, and the inherent mesoscale heterogeneities complicate stochastic dynamic fracture mechanisms even more. This work develops a numerical framework using mesoscale concrete models based on micro computed tomography (CT) images to investigate such mechanisms with meaningful stochastic analyses. A rate-dependent phase field model is proposed to characterise the dynamic initiation and propagation of cracks by incorporating both micro-viscosity and macroscopic viscoelasticity, which is described by two standard Maxwell elements with different relaxation times to consider a wide range of strain rates. Moreover, the viscoelastic constitutive relation is formulated in the full strain space, which allows for a spectral decomposition of the strain tensor to determine the effective damage driving force, thus effectively addressing the issue of compressive fracture. A numerical implementation scheme is developed by combining user-defined element and material subroutines in ABAQUS/Explicit solver. Extensive Monte Carlo simulations of dynamic tension up to a strain rate of 200 s−1 are performed with statistical analyses. This work reveals the intricate dynamics associated with mesoscale heterogeneities and identifies the critical transition state at 20 s−1. The transition is characterised by changing modes of fracture patterns, stress wave propagation, and load-carrying capacities. A new TDIF–strain rate–standard deviation relation is also proposed and aligns well with the increasing dispersion of experimental data. The relationship between void content and tensile strength reflects the formation characteristics of crack networks, with the void content exhibiting a positive correlation with the TDIF from 20 s−1 to 100 s−1.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Ingenieurwesen (insg.)
- Fahrzeugbau
- Ingenieurwesen (insg.)
- Luft- und Raumfahrttechnik
- Ingenieurwesen (insg.)
- Sicherheit, Risiko, Zuverlässigkeit und Qualität
- Ingenieurwesen (insg.)
- Meerestechnik
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Impact Engineering, Jahrgang 197, 105188, 03.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Stochastic analysis of dynamic fracture of concrete using CT-image based mesoscale models with a rate-dependent phase field method
AU - Huang, Yu jie
AU - Hai, Lu
AU - Li, Qing hua
AU - Zhang, Hui
AU - Cheng, Zhi
AU - Xu, Wen zheng
AU - Xu, Shi lang
N1 - Publisher Copyright: © 2024 Elsevier Ltd
PY - 2025/3
Y1 - 2025/3
N2 - Concrete structures are commonly exposed to dynamic loads spanning a wide range of strain rates, and the inherent mesoscale heterogeneities complicate stochastic dynamic fracture mechanisms even more. This work develops a numerical framework using mesoscale concrete models based on micro computed tomography (CT) images to investigate such mechanisms with meaningful stochastic analyses. A rate-dependent phase field model is proposed to characterise the dynamic initiation and propagation of cracks by incorporating both micro-viscosity and macroscopic viscoelasticity, which is described by two standard Maxwell elements with different relaxation times to consider a wide range of strain rates. Moreover, the viscoelastic constitutive relation is formulated in the full strain space, which allows for a spectral decomposition of the strain tensor to determine the effective damage driving force, thus effectively addressing the issue of compressive fracture. A numerical implementation scheme is developed by combining user-defined element and material subroutines in ABAQUS/Explicit solver. Extensive Monte Carlo simulations of dynamic tension up to a strain rate of 200 s−1 are performed with statistical analyses. This work reveals the intricate dynamics associated with mesoscale heterogeneities and identifies the critical transition state at 20 s−1. The transition is characterised by changing modes of fracture patterns, stress wave propagation, and load-carrying capacities. A new TDIF–strain rate–standard deviation relation is also proposed and aligns well with the increasing dispersion of experimental data. The relationship between void content and tensile strength reflects the formation characteristics of crack networks, with the void content exhibiting a positive correlation with the TDIF from 20 s−1 to 100 s−1.
AB - Concrete structures are commonly exposed to dynamic loads spanning a wide range of strain rates, and the inherent mesoscale heterogeneities complicate stochastic dynamic fracture mechanisms even more. This work develops a numerical framework using mesoscale concrete models based on micro computed tomography (CT) images to investigate such mechanisms with meaningful stochastic analyses. A rate-dependent phase field model is proposed to characterise the dynamic initiation and propagation of cracks by incorporating both micro-viscosity and macroscopic viscoelasticity, which is described by two standard Maxwell elements with different relaxation times to consider a wide range of strain rates. Moreover, the viscoelastic constitutive relation is formulated in the full strain space, which allows for a spectral decomposition of the strain tensor to determine the effective damage driving force, thus effectively addressing the issue of compressive fracture. A numerical implementation scheme is developed by combining user-defined element and material subroutines in ABAQUS/Explicit solver. Extensive Monte Carlo simulations of dynamic tension up to a strain rate of 200 s−1 are performed with statistical analyses. This work reveals the intricate dynamics associated with mesoscale heterogeneities and identifies the critical transition state at 20 s−1. The transition is characterised by changing modes of fracture patterns, stress wave propagation, and load-carrying capacities. A new TDIF–strain rate–standard deviation relation is also proposed and aligns well with the increasing dispersion of experimental data. The relationship between void content and tensile strength reflects the formation characteristics of crack networks, with the void content exhibiting a positive correlation with the TDIF from 20 s−1 to 100 s−1.
KW - Dynamic damage and fracture
KW - Micro computed tomography (CT)
KW - Monte Carlo simulations
KW - Phase field model
KW - Quasi-brittle materials
KW - Rate-dependence
UR - http://www.scopus.com/inward/record.url?scp=85210117225&partnerID=8YFLogxK
U2 - 10.1016/j.ijimpeng.2024.105188
DO - 10.1016/j.ijimpeng.2024.105188
M3 - Article
AN - SCOPUS:85210117225
VL - 197
JO - International Journal of Impact Engineering
JF - International Journal of Impact Engineering
SN - 0734-743X
M1 - 105188
ER -