Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 407-419 |
Seitenumfang | 13 |
Fachzeitschrift | Journal of Mathematical Fluid Mechanics |
Jahrgang | 14 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 13 Aug. 2011 |
Abstract
We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Mathematische Physik
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Mathematik (insg.)
- Computational Mathematics
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Mathematical Fluid Mechanics, Jahrgang 14, Nr. 3, 13.08.2011, S. 407-419.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Steady Water Waves with Multiple Critical Layers
T2 - Interior Dynamics
AU - Ehrnström, Mats
AU - Escher, Joachim
AU - Villari, Gabriele
PY - 2011/8/13
Y1 - 2011/8/13
N2 - We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.
AB - We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.
KW - Critical layers
KW - Small-amplitude waves
KW - Steady water waves
KW - Vorticity
UR - http://www.scopus.com/inward/record.url?scp=84870864362&partnerID=8YFLogxK
U2 - 10.1007/s00021-011-0068-8
DO - 10.1007/s00021-011-0068-8
M3 - Article
AN - SCOPUS:84870864362
VL - 14
SP - 407
EP - 419
JO - Journal of Mathematical Fluid Mechanics
JF - Journal of Mathematical Fluid Mechanics
SN - 1422-6928
IS - 3
ER -