Loading [MathJax]/extensions/tex2jax.js

Statistical process monitoring of networks

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Anna Malinovskaya

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades11 Apr. 2024
ErscheinungsortHannover
ISBNs (E-Book)978‑3‑7696‑5354-0
PublikationsstatusVeröffentlicht - 2024

Abstract

Die digitale Informationsrevolution bietet reichhaltige Möglichkeiten für den wissenschaftlichen Fortschritt; die Menge und Vielfalt der verfügbaren Daten erfordert jedoch neue Analysetechniken, um die wachsende Komplexität der Prozesse angemessen darstellen zu können. Diese Anforderungen haben die Entwicklung von Netzwerken beeinflusst und ihre Anwendung in verschiedene Disziplinen integriert. Diese Arbeit befasst sich mit der Erkennung von Änderungen in Netzwerken, wobei die Netzwerktheorie und die statistische Prozessüberwachung kombiniert werden, um verbesserte Techniken für die Netzwerküberwachung zu schaffen. Betrachtet man Netzwerke als graphenstrukturierte Daten mit entweder festen oder dynamischen Knoten und Kanten oder als ein auf künstlicher Intelligenz basierendes Modell, können drei Richtungen der Netzwerküberwachung identifiziert werden, nämlich die Netzwerküberwachung, bei der die Netzwerke Zufallsvariablen darstellen, die Netzwerküberwachung, bei der die Netzwerke als feste Strukturen angenommen sind, und die Überwachung künstlicher neuronaler Netzwerke. Die Idee, verschiedene Modellierungstechniken und Kontrollkarten aus der statistischen Prozessüberwachung zur Überwachung der netzbezogenen Prozesse zu verwenden, verbindet die Beiträge zu den skizzierten Überwachungsrichtungen. Der erste entwickelte Ansatz zeigt, wie multivariate Kontrollkarten verwendet werden können, um Veränderungen in dynamischen Netzwerken verschiedener Arten, die durch das zeitliche exponentielle Zufallsgraphenmodell erzeugt werden, in Echtzeit zu erkennen. Dieses überwachungsverfahren ermöglicht zahlreiche Anwendungen in verschiedenen Disziplinen, die an der Analyse von Netzwerken mittlerer Größe interessiert sind. Als nächstes wird der Überwachungsansatz zur Erkennung von Anomalien in einem Netzwerk mit einer festen Struktur und einem Zufallsprozess auf seinen Kanten durch die Kombination des verallgemeinerten autoregressiven Netzwerkmodells mit knotenspezifischen exogenen Zeitreihenvariablen und der auf Residuen basierenden kumulativen Summenkontrollkarte vorgestellt. Dieses Verfahren kann von besonderem Interesse für die Gewährleistung der Infrastruktursicherheit, aber auch für die Vorhersage möglicher Ausfälle sein. Der dritte Beitrag widmet sich der Entwicklung eines Überwachungsverfahrens für künstliche neuronale Netze, das eine nichtparametrische multivariate Kontrollkarte auf der Grundlage von Rängen und Datentiefen anwendet. Die Kernidee besteht darin, die niedrigdimensionale Repräsentation der Eingabedaten, sogenannte embeddings, zu überwachen, die von künstlichen neuronalen Netzen erzeugt werden, um Nicht-Stationarität in einem Datenfluss zu erkennen. Neben der Entwicklung von drei Überwachungsansätzen wird als vierter Beitrag die Erweiterung von der reinen Detektion des Änderungspunktes zur Identifikation seiner Ursache vorgestellt. Die Untersuchung umfasst einen Vorschlag für ein automatisiertes Inspektionsverfahren, das eine Kontrollkarte für Quantilsfunktionswerte und ein künstliches neuronales Netz für Graphen zusammenführt.

Zitieren

Statistical process monitoring of networks. / Malinovskaya, Anna.
Hannover, 2024. 120 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Malinovskaya, A 2024, 'Statistical process monitoring of networks', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. <https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-942.pdf>
Malinovskaya, A. (2024). Statistical process monitoring of networks. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/c-942.pdf
Malinovskaya A. Statistical process monitoring of networks. Hannover, 2024. 120 S. (Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover). (Veröffentlichungen / Deutsche Geodätische Kommission : DGK. Reihe C, Dissertationen ).
Malinovskaya, Anna. / Statistical process monitoring of networks. Hannover, 2024. 120 S.
Download
@phdthesis{d28eb494fdf14634a75dad482b172070,
title = "Statistical process monitoring of networks",
abstract = "The digital information revolution offers rich opportunities for scientific progress; however, the amount and variety of data available require new analysis techniques in order to adequately address the growing complexity of processes. These requirements have influenced the development of networks and integrated their application in various disciplines. This thesis addresses the detection of changes in networks, combining network theory and sta-tistical process monitoring to create improved techniques for network monitoring. Considering networks as graph-structured data with either fixed or dynamic nodes and edges or as a model based on artificial intelligence, three directions of network monitoring are identified, namely, random network monitoring where the networks represent random variables, fixed network monitoring where the networks are assumed to be fixed structures, and monitoring of artificial neural networks. The idea of using different modelling techniques and control charts to monitor network-related processes connects contributions in this thesis to the outlined monitoring directions.The first developed approach shows how multivariate control charts can be used to detect changes in dynamic networks of various types generated by the temporal exponential random graph model in an online manner. This monitoring procedure allows for many applications in different disci-plines which are interested in analysing networks of medium size.Next, the monitoring framework to detect anomalies in the network with a given structure but a random process on it by combining the generalised network autoregressive model with nodespecific time series exogenous variables and the cumulative sum control chart based on residualsis presented. This approach can be of particular interest for guaranteeing the safety of the infrastructure but also for foreseeing possible accidents.The third contribution is dedicated to the development of a monitoring procedure for artificial neural network applications that applies a non-parametric multivariate control chart based on ranks and data depths. The core idea is to monitor a low-dimensional representation of input data calledembeddings that are generated by artificial neural networks to detect nonstationarity in a processed data stream. In addition to the development of three monitoring approaches, a fourth contribution, namely the extension from the pure detection of the change point to the identification of its cause is presented. The investigation includes a proposal for an automated inspection procedure, bringing together a control chart for quantile function values and a graph convolutional network.",
author = "Anna Malinovskaya",
year = "2024",
language = "English",
series = "Wissenschaftliche Arbeiten der Fachrichtung Geod{\"a}sie und Geoinformatik der Leibniz-Universit{\"a}t Hannover",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Statistical process monitoring of networks

AU - Malinovskaya, Anna

PY - 2024

Y1 - 2024

N2 - The digital information revolution offers rich opportunities for scientific progress; however, the amount and variety of data available require new analysis techniques in order to adequately address the growing complexity of processes. These requirements have influenced the development of networks and integrated their application in various disciplines. This thesis addresses the detection of changes in networks, combining network theory and sta-tistical process monitoring to create improved techniques for network monitoring. Considering networks as graph-structured data with either fixed or dynamic nodes and edges or as a model based on artificial intelligence, three directions of network monitoring are identified, namely, random network monitoring where the networks represent random variables, fixed network monitoring where the networks are assumed to be fixed structures, and monitoring of artificial neural networks. The idea of using different modelling techniques and control charts to monitor network-related processes connects contributions in this thesis to the outlined monitoring directions.The first developed approach shows how multivariate control charts can be used to detect changes in dynamic networks of various types generated by the temporal exponential random graph model in an online manner. This monitoring procedure allows for many applications in different disci-plines which are interested in analysing networks of medium size.Next, the monitoring framework to detect anomalies in the network with a given structure but a random process on it by combining the generalised network autoregressive model with nodespecific time series exogenous variables and the cumulative sum control chart based on residualsis presented. This approach can be of particular interest for guaranteeing the safety of the infrastructure but also for foreseeing possible accidents.The third contribution is dedicated to the development of a monitoring procedure for artificial neural network applications that applies a non-parametric multivariate control chart based on ranks and data depths. The core idea is to monitor a low-dimensional representation of input data calledembeddings that are generated by artificial neural networks to detect nonstationarity in a processed data stream. In addition to the development of three monitoring approaches, a fourth contribution, namely the extension from the pure detection of the change point to the identification of its cause is presented. The investigation includes a proposal for an automated inspection procedure, bringing together a control chart for quantile function values and a graph convolutional network.

AB - The digital information revolution offers rich opportunities for scientific progress; however, the amount and variety of data available require new analysis techniques in order to adequately address the growing complexity of processes. These requirements have influenced the development of networks and integrated their application in various disciplines. This thesis addresses the detection of changes in networks, combining network theory and sta-tistical process monitoring to create improved techniques for network monitoring. Considering networks as graph-structured data with either fixed or dynamic nodes and edges or as a model based on artificial intelligence, three directions of network monitoring are identified, namely, random network monitoring where the networks represent random variables, fixed network monitoring where the networks are assumed to be fixed structures, and monitoring of artificial neural networks. The idea of using different modelling techniques and control charts to monitor network-related processes connects contributions in this thesis to the outlined monitoring directions.The first developed approach shows how multivariate control charts can be used to detect changes in dynamic networks of various types generated by the temporal exponential random graph model in an online manner. This monitoring procedure allows for many applications in different disci-plines which are interested in analysing networks of medium size.Next, the monitoring framework to detect anomalies in the network with a given structure but a random process on it by combining the generalised network autoregressive model with nodespecific time series exogenous variables and the cumulative sum control chart based on residualsis presented. This approach can be of particular interest for guaranteeing the safety of the infrastructure but also for foreseeing possible accidents.The third contribution is dedicated to the development of a monitoring procedure for artificial neural network applications that applies a non-parametric multivariate control chart based on ranks and data depths. The core idea is to monitor a low-dimensional representation of input data calledembeddings that are generated by artificial neural networks to detect nonstationarity in a processed data stream. In addition to the development of three monitoring approaches, a fourth contribution, namely the extension from the pure detection of the change point to the identification of its cause is presented. The investigation includes a proposal for an automated inspection procedure, bringing together a control chart for quantile function values and a graph convolutional network.

M3 - Doctoral thesis

T3 - Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover

CY - Hannover

ER -

Von denselben Autoren