Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 171-186 |
Seitenumfang | 16 |
Fachzeitschrift | Journal of Elliptic and Parabolic Equations |
Jahrgang | 6 |
Ausgabenummer | 1 |
Frühes Online-Datum | 28 März 2020 |
Publikationsstatus | Veröffentlicht - Juni 2020 |
Abstract
Existence of stationary solutions to a nonlocal fourth-order elliptic obstacle problem arising from the modelling of microelectromechanical systems with heterogeneous dielectric properties is shown. The underlying variational structure of the model is exploited to construct these solutions as minimizers of a suitably regularized energy, which allows us to weaken considerably the assumptions on the model used in a previous article.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
- Mathematik (insg.)
- Numerische Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Elliptic and Parabolic Equations, Jahrgang 6, Nr. 1, 06.2020, S. 171-186.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Stationary solutions to a nonlocal fourth-order elliptic obstacle problem
AU - Laurençot, Philippe
AU - Walker, Christoph
N1 - Funding information: Partially supported by the CNRS Projet International de Coopération Scientifique PICS07710.
PY - 2020/6
Y1 - 2020/6
N2 - Existence of stationary solutions to a nonlocal fourth-order elliptic obstacle problem arising from the modelling of microelectromechanical systems with heterogeneous dielectric properties is shown. The underlying variational structure of the model is exploited to construct these solutions as minimizers of a suitably regularized energy, which allows us to weaken considerably the assumptions on the model used in a previous article.
AB - Existence of stationary solutions to a nonlocal fourth-order elliptic obstacle problem arising from the modelling of microelectromechanical systems with heterogeneous dielectric properties is shown. The underlying variational structure of the model is exploited to construct these solutions as minimizers of a suitably regularized energy, which allows us to weaken considerably the assumptions on the model used in a previous article.
KW - Bilaplacian
KW - MEMS
KW - Minimizer
KW - Stationary solution
KW - Variational inequality
UR - http://www.scopus.com/inward/record.url?scp=85082972389&partnerID=8YFLogxK
U2 - 10.1007/s41808-020-00059-9
DO - 10.1007/s41808-020-00059-9
M3 - Article
AN - SCOPUS:85082972389
VL - 6
SP - 171
EP - 186
JO - Journal of Elliptic and Parabolic Equations
JF - Journal of Elliptic and Parabolic Equations
SN - 2296-9020
IS - 1
ER -