Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1015-1031 |
Seitenumfang | 17 |
Fachzeitschrift | Forum Mathematicum |
Jahrgang | 34 |
Ausgabenummer | 4 |
Frühes Online-Datum | 20 Apr. 2022 |
Publikationsstatus | Veröffentlicht - 1 Juli 2022 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Angewandte Mathematik
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Forum Mathematicum, Jahrgang 34, Nr. 4, 01.07.2022, S. 1015-1031.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Stable vector bundles on generalized Kummer varieties
AU - Reede, Fabian
AU - Zhang, Ziyu
N1 - Acknowledgments: We thank the referee for carefully reading a previous version of the manuscript and several suggestions for improvement.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - Let \(A\) be an abelian surface. We construct two complete families of stable vector bundles on the generalized Kummer variety \(K_n(A)\). The first is the family of tautological bundles associated to stable bundles on \(A\), and the second is the family of the ''wrong-way'' fibers of a universal family of stable bundles on the dual abelian variety \(\widehat{A}\) parametrized by \(K_n(A)\). Each family exhibits a smooth connected component in the moduli space of stable bundles on \(K_n(A)\)
AB - Let \(A\) be an abelian surface. We construct two complete families of stable vector bundles on the generalized Kummer variety \(K_n(A)\). The first is the family of tautological bundles associated to stable bundles on \(A\), and the second is the family of the ''wrong-way'' fibers of a universal family of stable bundles on the dual abelian variety \(\widehat{A}\) parametrized by \(K_n(A)\). Each family exhibits a smooth connected component in the moduli space of stable bundles on \(K_n(A)\)
KW - generalized Kummer varieties
KW - moduli spaces
KW - Stable sheaves
UR - http://www.scopus.com/inward/record.url?scp=85129244168&partnerID=8YFLogxK
U2 - 10.1515/forum-2021-0249
DO - 10.1515/forum-2021-0249
M3 - Article
VL - 34
SP - 1015
EP - 1031
JO - Forum Mathematicum
JF - Forum Mathematicum
SN - 0933-7741
IS - 4
ER -