Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 243-255 |
Seitenumfang | 13 |
Fachzeitschrift | Journal of Nonlinear Mathematical Physics |
Jahrgang | 11 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 2004 |
Abstract
We investigate weakly coupled semilinear parabolic systems in unbounded domains in R2 or R3 with polynomial nonlinearities. Three sufficient conditions are presented to ensure the stability of the zero solution with respect to non-negative H 2-perturbations.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Mathematik (insg.)
- Mathematische Physik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Nonlinear Mathematical Physics, Jahrgang 11, Nr. 2, 2004, S. 243-255.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Stable Equilibria to Parabolic Systems in Unbounded domains
AU - Escher, Joachim
AU - Yin, Zhaoyang
N1 - Funding information: The second author expresses his sincere thanks for the financial support by the DFG-Graduiertenkolleg 615 and many hospitalities offered by the Institute for Applied Mathematics at the University of Hanover.
PY - 2004
Y1 - 2004
N2 - We investigate weakly coupled semilinear parabolic systems in unbounded domains in R2 or R3 with polynomial nonlinearities. Three sufficient conditions are presented to ensure the stability of the zero solution with respect to non-negative H 2-perturbations.
AB - We investigate weakly coupled semilinear parabolic systems in unbounded domains in R2 or R3 with polynomial nonlinearities. Three sufficient conditions are presented to ensure the stability of the zero solution with respect to non-negative H 2-perturbations.
UR - http://www.scopus.com/inward/record.url?scp=2442656751&partnerID=8YFLogxK
U2 - 10.2991/jnmp.2004.11.2.9
DO - 10.2991/jnmp.2004.11.2.9
M3 - Article
AN - SCOPUS:2442656751
VL - 11
SP - 243
EP - 255
JO - Journal of Nonlinear Mathematical Physics
JF - Journal of Nonlinear Mathematical Physics
SN - 1402-9251
IS - 2
ER -