Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 363-379 |
Seitenumfang | 17 |
Fachzeitschrift | Communications in Partial Differential Equations |
Jahrgang | 36 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 1 März 2011 |
Abstract
We consider the dynamic of a fixed volume of ferrofluid in a Hele-Shaw cell under the influence of centrifugal and magnetic forces. The steady-state solutions of the associated moving boundary problem are the periodic solutions of a generalized Laplace-Young equation. We use bifurcation theory to find analytic curves consisting of non-radial steady-state solutions of the problem. The stability of these solutions is discussed by using the exchange of stability theorem.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Communications in Partial Differential Equations, Jahrgang 36, Nr. 3, 01.03.2011, S. 363-379.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Stability Properties of non-Radial Steady Ferrofluid Patterns
AU - Escher, Joachim
AU - Matioc, Bogdan-Vasile
PY - 2011/3/1
Y1 - 2011/3/1
N2 - We consider the dynamic of a fixed volume of ferrofluid in a Hele-Shaw cell under the influence of centrifugal and magnetic forces. The steady-state solutions of the associated moving boundary problem are the periodic solutions of a generalized Laplace-Young equation. We use bifurcation theory to find analytic curves consisting of non-radial steady-state solutions of the problem. The stability of these solutions is discussed by using the exchange of stability theorem.
AB - We consider the dynamic of a fixed volume of ferrofluid in a Hele-Shaw cell under the influence of centrifugal and magnetic forces. The steady-state solutions of the associated moving boundary problem are the periodic solutions of a generalized Laplace-Young equation. We use bifurcation theory to find analytic curves consisting of non-radial steady-state solutions of the problem. The stability of these solutions is discussed by using the exchange of stability theorem.
KW - Exchange of stability
KW - Stability
KW - Steady-state solutions
UR - http://www.scopus.com/inward/record.url?scp=78650457837&partnerID=8YFLogxK
U2 - 10.1080/03605302.2010.510165
DO - 10.1080/03605302.2010.510165
M3 - Article
AN - SCOPUS:78650457837
VL - 36
SP - 363
EP - 379
JO - Communications in Partial Differential Equations
JF - Communications in Partial Differential Equations
SN - 0360-5302
IS - 3
ER -