Stability of the Spinor Flow

Publikation: Arbeitspapier/PreprintPreprint

Autorschaft

  • Lothar Simon Schiemanowski

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungStabilität des Spinorfluss
OriginalspracheEnglisch
Seiten1-22
Seitenumfang22
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 28 Juni 2017

Abstract

We show stability of pairs of Ricci flat metrics and parallel spinor fields with respect to the spinor flow, i.e. we show that the spinor flow with initial conditions near such pairs converges to a critical point with exponential speed. Moreover, we show stability of certain volume constrained critical points of the spinorial energy.

Zitieren

Stability of the Spinor Flow. / Schiemanowski, Lothar Simon.
2017. S. 1-22.

Publikation: Arbeitspapier/PreprintPreprint

Schiemanowski, L. S. (2017). Stability of the Spinor Flow. (S. 1-22). Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.1706.09292
Schiemanowski LS. Stability of the Spinor Flow. 2017 Jun 28, S. 1-22. Epub 2017 Jun 28. doi: 10.48550/arXiv.1706.09292
Schiemanowski, Lothar Simon. / Stability of the Spinor Flow. 2017. S. 1-22
Download
@techreport{fc2a848369844f5ebb8d0d740650544e,
title = "Stability of the Spinor Flow",
abstract = "We show stability of pairs of Ricci flat metrics and parallel spinor fields with respect to the spinor flow, i.e. we show that the spinor flow with initial conditions near such pairs converges to a critical point with exponential speed. Moreover, we show stability of certain volume constrained critical points of the spinorial energy.",
author = "Schiemanowski, {Lothar Simon}",
year = "2017",
month = jun,
day = "28",
doi = "10.48550/arXiv.1706.09292",
language = "English",
pages = "1--22",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Stability of the Spinor Flow

AU - Schiemanowski, Lothar Simon

PY - 2017/6/28

Y1 - 2017/6/28

N2 - We show stability of pairs of Ricci flat metrics and parallel spinor fields with respect to the spinor flow, i.e. we show that the spinor flow with initial conditions near such pairs converges to a critical point with exponential speed. Moreover, we show stability of certain volume constrained critical points of the spinorial energy.

AB - We show stability of pairs of Ricci flat metrics and parallel spinor fields with respect to the spinor flow, i.e. we show that the spinor flow with initial conditions near such pairs converges to a critical point with exponential speed. Moreover, we show stability of certain volume constrained critical points of the spinorial energy.

U2 - 10.48550/arXiv.1706.09292

DO - 10.48550/arXiv.1706.09292

M3 - Preprint

SP - 1

EP - 22

BT - Stability of the Spinor Flow

ER -