Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1785-1800 |
Seitenumfang | 16 |
Fachzeitschrift | Mathematical research letters |
Jahrgang | 27 |
Ausgabenummer | 6 |
Publikationsstatus | Veröffentlicht - 2020 |
Extern publiziert | Ja |
Abstract
We prove that, if C is a smooth projective curve over the complex numbers, and E is a stable vector bundle on C whose slope does not lie in the interval [-1, n - 1], then the associated tautological bundle E[n] on the symmetric product C(n) is again stable. Also, if E is semi-stable and its slope does not lie in (-1, n - 1), then E[n] is semi-stable.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematical research letters, Jahrgang 27, Nr. 6, 2020, S. 1785-1800.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Stability of tautological bundles on symmetric products of curves
AU - Krug, Andreas
PY - 2020
Y1 - 2020
N2 - We prove that, if C is a smooth projective curve over the complex numbers, and E is a stable vector bundle on C whose slope does not lie in the interval [-1, n - 1], then the associated tautological bundle E[n] on the symmetric product C(n) is again stable. Also, if E is semi-stable and its slope does not lie in (-1, n - 1), then E[n] is semi-stable.
AB - We prove that, if C is a smooth projective curve over the complex numbers, and E is a stable vector bundle on C whose slope does not lie in the interval [-1, n - 1], then the associated tautological bundle E[n] on the symmetric product C(n) is again stable. Also, if E is semi-stable and its slope does not lie in (-1, n - 1), then E[n] is semi-stable.
UR - http://www.scopus.com/inward/record.url?scp=85102519071&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1809.06450
DO - 10.48550/arXiv.1809.06450
M3 - Article
AN - SCOPUS:85102519071
VL - 27
SP - 1785
EP - 1800
JO - Mathematical research letters
JF - Mathematical research letters
SN - 1073-2780
IS - 6
ER -