Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 315-341 |
Seitenumfang | 27 |
Fachzeitschrift | Mathematische Zeitschrift |
Jahrgang | 301 |
Ausgabenummer | 1 |
Frühes Online-Datum | 3 Dez. 2021 |
Publikationsstatus | Veröffentlicht - Mai 2022 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Zeitschrift, Jahrgang 301, Nr. 1, 05.2022, S. 315-341.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Stability of some vector bundles on Hilbert schemes of points on K3 surfaces
AU - Reede, Fabian
AU - Zhang, Ziyu
N1 - Funding Information: We thank Nicolas Addington and Andrew Wray for kindly sending us [22 ]. We also thank Norbert Hoffmann for communicating to us Lemma 3.5. We are particularly grateful to the anonymous referee who helped to improve the presentation of the manuscript greatly, and pointed out a mistake in a previous version of Proposition 3.14. In particular, Lemmas 3.12 and 3.13 in the current version are due to the referee. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
PY - 2022/5
Y1 - 2022/5
N2 - Let \(X\) be a projective K3 surfaces. In two examples where there exists a fine moduli space \(M\) of stable vector bundles on \(X\), isomorphic to a Hilbert scheme of points, we prove that the universal family \(\mathcal{E}\) on \(X\times M\) can be understood as a complete flat family of stable vector bundles on \(M\) parametrized by \(X\), which identifies \(X\) with a smooth connected component of some moduli space of stable sheaves on \(M\).
AB - Let \(X\) be a projective K3 surfaces. In two examples where there exists a fine moduli space \(M\) of stable vector bundles on \(X\), isomorphic to a Hilbert scheme of points, we prove that the universal family \(\mathcal{E}\) on \(X\times M\) can be understood as a complete flat family of stable vector bundles on \(M\) parametrized by \(X\), which identifies \(X\) with a smooth connected component of some moduli space of stable sheaves on \(M\).
KW - Hilbert schemes
KW - Moduli spaces
KW - Stable sheaves
KW - Universal families
UR - http://www.scopus.com/inward/record.url?scp=85120558782&partnerID=8YFLogxK
U2 - 10.1007/s00209-021-02920-6
DO - 10.1007/s00209-021-02920-6
M3 - Article
VL - 301
SP - 315
EP - 341
JO - Mathematische Zeitschrift
JF - Mathematische Zeitschrift
SN - 0025-5874
IS - 1
ER -