Spherical subcategories in algebraic geometry

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Andreas Hochenegger
  • Martin Kalck
  • David Ploog

Organisationseinheiten

Externe Organisationen

  • Universität zu Köln
  • University of Edinburgh
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1450-1465
Seitenumfang16
FachzeitschriftMathematische Nachrichten
Jahrgang289
Ausgabenummer11-12
Frühes Online-Datum19 Jan. 2016
PublikationsstatusVeröffentlicht - 15 Aug. 2016

Abstract

We study objects in triangulated categories which have a two-dimensional graded endomorphism algebra. Given such an object, we show that there is a unique maximal triangulated subcategory, in which the object is spherical. This general result is then applied to examples from algebraic geometry.

ASJC Scopus Sachgebiete

Zitieren

Spherical subcategories in algebraic geometry. / Hochenegger, Andreas; Kalck, Martin; Ploog, David.
in: Mathematische Nachrichten, Jahrgang 289, Nr. 11-12, 15.08.2016, S. 1450-1465.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Hochenegger A, Kalck M, Ploog D. Spherical subcategories in algebraic geometry. Mathematische Nachrichten. 2016 Aug 15;289(11-12):1450-1465. Epub 2016 Jan 19. doi: 10.48550/arXiv.1208.4046, 10.1002/mana.201400232
Hochenegger, Andreas ; Kalck, Martin ; Ploog, David. / Spherical subcategories in algebraic geometry. in: Mathematische Nachrichten. 2016 ; Jahrgang 289, Nr. 11-12. S. 1450-1465.
Download
@article{773c7b936e844a0696047ded2ed347d4,
title = "Spherical subcategories in algebraic geometry",
abstract = "We study objects in triangulated categories which have a two-dimensional graded endomorphism algebra. Given such an object, we show that there is a unique maximal triangulated subcategory, in which the object is spherical. This general result is then applied to examples from algebraic geometry.",
keywords = "spherelike object, spherical object, spherical subcategory, Triangulated category, twist functor",
author = "Andreas Hochenegger and Martin Kalck and David Ploog",
note = "Funding information: Martin Kalck is grateful for the support by the DFG grant Bu-1886/2-1. The authors would like to thank Stephen Coughlan, Sergey Galkin, Matthias Sch?tt, Pawel Sosna, Greg Stevenson, Rahbar Virk and Michael Wemyss for answering our questions. We are very grateful to the anonymous referees for very thorough reading and many valuable comments.",
year = "2016",
month = aug,
day = "15",
doi = "10.48550/arXiv.1208.4046",
language = "English",
volume = "289",
pages = "1450--1465",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-VCH Verlag",
number = "11-12",

}

Download

TY - JOUR

T1 - Spherical subcategories in algebraic geometry

AU - Hochenegger, Andreas

AU - Kalck, Martin

AU - Ploog, David

N1 - Funding information: Martin Kalck is grateful for the support by the DFG grant Bu-1886/2-1. The authors would like to thank Stephen Coughlan, Sergey Galkin, Matthias Sch?tt, Pawel Sosna, Greg Stevenson, Rahbar Virk and Michael Wemyss for answering our questions. We are very grateful to the anonymous referees for very thorough reading and many valuable comments.

PY - 2016/8/15

Y1 - 2016/8/15

N2 - We study objects in triangulated categories which have a two-dimensional graded endomorphism algebra. Given such an object, we show that there is a unique maximal triangulated subcategory, in which the object is spherical. This general result is then applied to examples from algebraic geometry.

AB - We study objects in triangulated categories which have a two-dimensional graded endomorphism algebra. Given such an object, we show that there is a unique maximal triangulated subcategory, in which the object is spherical. This general result is then applied to examples from algebraic geometry.

KW - spherelike object

KW - spherical object

KW - spherical subcategory

KW - Triangulated category

KW - twist functor

UR - http://www.scopus.com/inward/record.url?scp=84955303422&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1208.4046

DO - 10.48550/arXiv.1208.4046

M3 - Article

AN - SCOPUS:84955303422

VL - 289

SP - 1450

EP - 1465

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

IS - 11-12

ER -